Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 22, Issue 4, Pages 561–569 (Mi mz8078)  

This article is cited in 2 scientific papers (total in 2 papers)

The ergodicity of service systems with an infinite number of servomechanisms

A. Yu. Veretennikov

M. V. Lomonosov Moscow State University

Abstract: Existence, uniqueness, and ergodicity are proved for a stationary distribution for a service system having countably many servomechanisms with input flow rate $\lambda_k$ depending on the number $k$ of servomechanisms occupied, and with arbitrary (identical) distribution of the service time with finite mean $\mu$, under the condition $\mu\varlimsup\limits_{k\to\infty}\frac{\lambda_k}{k+1}<1$. For this system we have, in particular, Erlang's formula
$$ p_k(t)\underset{k\to\infty}\longrightarrow p_k=\frac{\lambda_0…\lambda_{k-1}\mu^k}{k!}p_0,\quad k=0,1,…,\quad p_0^{-1}=\sum_{k=0}^\infty\frac{\lambda_0…\lambda_{k-1}\mu^k}{k!},\quad\lambda_{-1}=1. $$


Full text: PDF file (611 kB)

English version:
Mathematical Notes, 1977, 22:4, 804–808

Bibliographic databases:

UDC: 519.2
Received: 24.09.1976

Citation: A. Yu. Veretennikov, “The ergodicity of service systems with an infinite number of servomechanisms”, Mat. Zametki, 22:4 (1977), 561–569; Math. Notes, 22:4 (1977), 804–808

Citation in format AMSBIB
\Bibitem{Ver77}
\by A.~Yu.~Veretennikov
\paper The ergodicity of service systems with an infinite number of servomechanisms
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 4
\pages 561--569
\mathnet{http://mi.mathnet.ru/mz8078}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=518585}
\zmath{https://zbmath.org/?q=an:0408.60095}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 4
\pages 804--808
\crossref{https://doi.org/10.1007/BF01146428}


Linking options:
  • http://mi.mathnet.ru/eng/mz8078
  • http://mi.mathnet.ru/eng/mz/v22/i4/p561

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Veretennikov, “On the rate of convergence to the stationary distribution in the single-server queuing systems”, Autom. Remote Control, 74:10 (2013), 1620–1629  mathnet  crossref  isi
    2. A. Yu. Veretennikov, “On convergence rate for Erlang–Sevastyanov type models with infinitely many servers. In memory and to the 90th anniversary of A.D. Solovyev (06.09.1927–06.04.2001)”, Theory Stoch. Process., 22(38):1 (2017), 89–103  mathnet  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:197
    Full text:99
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021