RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1978, Volume 23, Issue 2, Pages 177–181 (Mi mz8131)  

This article is cited in 2 scientific papers (total in 2 papers)

A geometric property of extremal surfaces

É. I. Kovalevskaya

Institute of Mathematics, Academy of Sciences Byelorussian SSR

Abstract: Let the surface $\Gamma\in R^3$ be defined by the equation $z=f(x,y)$, where $f(x,y)$ is a function 3 times continuously differentiable in $R^2$. It is proved that if the total (Gaussian) curvature of the surface $\Gamma$ is nonzero almost everywhere on $\Gamma$ (in the sense of Lebesgue measure in $R^2$), then $\Gamma$ is extremal, i.e., for almost all $(x,y)\in R^2$ the inequality
$$ \max(\|qx\|,\|qy\|,\|qf(x,y)\|)>q^{-1/3-\varepsilon}, $$
holds for all integral $q\ge q_0(f)$, where $\|x\|$ is the distance from the real number $x$ to the nearest integer and $\varepsilon>0$ is arbitrarily small.

Full text: PDF file (370 kB)

English version:
Mathematical Notes, 1978, 23:2, 99–101

Bibliographic databases:

UDC: 511
Received: 17.12.1975

Citation: É. I. Kovalevskaya, “A geometric property of extremal surfaces”, Mat. Zametki, 23:2 (1978), 177–181; Math. Notes, 23:2 (1978), 99–101

Citation in format AMSBIB
\Bibitem{Kov78}
\by \'E.~I.~Kovalevskaya
\paper A~geometric property of extremal surfaces
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 2
\pages 177--181
\mathnet{http://mi.mathnet.ru/mz8131}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=492661}
\zmath{https://zbmath.org/?q=an:0406.10042|0387.10020}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 2
\pages 99--101
\crossref{https://doi.org/10.1007/BF01153147}


Linking options:
  • http://mi.mathnet.ru/eng/mz8131
  • http://mi.mathnet.ru/eng/mz/v23/i2/p177

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Sprindzhuk, “Achievements and problems in Diophantine approximation theory”, Russian Math. Surveys, 35:4 (1980), 1–80  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. E. I. Kovalevskaya, “Trigonometricheskie summy v metricheskoi teorii diofantovykh priblizhenii”, Chebyshevskii sb., 20:2 (2019), 207–220  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:109
    Full text:53
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020