RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1978, Volume 23, Issue 3, Pages 379–388 (Mi mz8153)  

This article is cited in 8 scientific papers (total in 8 papers)

Moduli of continuity of functions, defined on a zero-dimensional group

A. I. Rubinshtein

Moscow Wood Technology Institute

Abstract: It is shown that the condition $\omega\equiv \{\omega_n\}_0^\infty\searrow0$ is a criterion of modulus of continuity in the spaces $C(G)$, $L(G)$, and $L_2(G)$ of functions defined on a zero-dimensional compact Abelian group $G$.

Full text: PDF file (604 kB)

English version:
Mathematical Notes, 1978, 23:3, 205–211

Bibliographic databases:

UDC: 517.5
Received: 24.06.1976

Citation: A. I. Rubinshtein, “Moduli of continuity of functions, defined on a zero-dimensional group”, Mat. Zametki, 23:3 (1978), 379–388; Math. Notes, 23:3 (1978), 205–211

Citation in format AMSBIB
\Bibitem{Rub78}
\by A.~I.~Rubinshtein
\paper Moduli of continuity of functions, defined on a~zero-dimensional group
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 3
\pages 379--388
\mathnet{http://mi.mathnet.ru/mz8153}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=470624}
\zmath{https://zbmath.org/?q=an:0425.43011|0405.43006}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 3
\pages 205--211
\crossref{https://doi.org/10.1007/BF01651433}


Linking options:
  • http://mi.mathnet.ru/eng/mz8153
  • http://mi.mathnet.ru/eng/mz/v23/i3/p379

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. A. I. Rubinstein, “On a certain integral operator acting on functions defined on the dyadic group”, Eurasian Math. J., 7:1 (2016), 68–73  mathnet
    3. Platonov S.S., “An Analogue of the Titchmarsh Theorem For the Fourier Transform on Locally Compact Vilenkin Groups”, P-Adic Numbers Ultrametric Anal. Appl., 9:4 (2017), 306–313  crossref  isi
    4. S. S. Platonov, “An Analog of Titchmarsh's Theorem for the Fourier–Walsh Transform”, Math. Notes, 103:1 (2018), 96–103  mathnet  crossref  crossref  isi  elib
    5. Platonov S.S., “Some Problems in the Theory of Approximation of Functions on the Group of P-Adic Numbers”, P-Adic Numbers Ultrametric Anal. Appl., 10:2 (2018), 118–129  crossref  isi
    6. A. I. Rubinshtein, “On Bary–Stechkin theorem”, Ufa Math. J., 11:1 (2019), 70–74  mathnet  crossref  isi
    7. Platonov S.S., “Some Problems in the Theory of Approximation of Functions on Locally Compact Vilenkin Groups”, P-Adic Numbers Ultrametric Anal. Appl., 11:2 (2019), 163–175  crossref  isi
    8. S. S. Platonov, “On the Fourier–Walsh Transform of Functions from Dyadic Dini–Lipschitz Classes on the Semiaxis”, Math. Notes, 108:2 (2020), 229–242  mathnet  crossref  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:155
    Full text:66
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020