|
This article is cited in 2 scientific papers (total in 2 papers)
Effective Compactness and Sigma-Compactness
V. G. Kanovei, V. A. Lyubetskii A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Abstract:
Using the Gandy–Harrington topology and other methods of effective descriptive set theory, we prove several theorems about compact and $\sigma$-compact sets. In particular, it is proved that any $\Delta_1^1$-set $A$ in the Baire space $\mathscr N$ either is an at most countable union of compact $\Delta_1^1$-sets (and hence is $\sigma$-compact) or contains a relatively closed subset homeomorphic to $\mathscr N$ (in this case, of course, $A$ cannot be $\sigma$-compact).
Keywords:
effective descriptive set theory, effectively compact, $\sigma$-compact, the Baire space, Gandy–Harrington topology, $\Delta^1_1$-set
DOI:
https://doi.org/10.4213/mzm8544
Full text:
PDF file (574 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2012, 91:6, 789–799
Bibliographic databases:
UDC:
510.225 Received: 01.11.2009 Revised: 27.05.2011
Citation:
V. G. Kanovei, V. A. Lyubetskii, “Effective Compactness and Sigma-Compactness”, Mat. Zametki, 91:6 (2012), 840–852; Math. Notes, 91:6 (2012), 789–799
Citation in format AMSBIB
\Bibitem{KanLyu12}
\by V.~G.~Kanovei, V.~A.~Lyubetskii
\paper Effective Compactness and Sigma-Compactness
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 6
\pages 840--852
\mathnet{http://mi.mathnet.ru/mz8544}
\crossref{https://doi.org/10.4213/mzm8544}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201521}
\elib{http://elibrary.ru/item.asp?id=20731550}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 6
\pages 789--799
\crossref{https://doi.org/10.1134/S0001434612050252}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000305984400025}
\elib{http://elibrary.ru/item.asp?id=24952888}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864194710}
Linking options:
http://mi.mathnet.ru/eng/mz8544https://doi.org/10.4213/mzm8544 http://mi.mathnet.ru/eng/mz/v91/i6/p840
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. G. Kanovei, V. A. Lyubetskii, “On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model”, Math. Notes, 98:2 (2015), 273–282
-
Lyubetsky V.A. Seliverstov A.V., “A novel algorithm for solution of a combinatory set partitioning problem”, J. Commun. Technol. Electron., 61:6 (2016), 705–708
|
Number of views: |
This page: | 314 | Full text: | 51 | References: | 24 | First page: | 8 |
|