RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2011, Volume 89, Issue 6, Pages 929–937 (Mi mz8658)  

The WKB Method and Differential Consequences of the Riccati Equation

N. L. Chuprikov

Tomsk State Pedagogical University

Abstract: A generalized WKB method based on the use of the differential consequences of the Riccati equation is presented. The method combines the simplicity of the traditional WKB method and the universality of the Maslov method: in the case of a smooth potential with classical turning points in a bounded space interval, the leading term of the expansion is found as a root of an algebraic equation and provides a regular approximate solution in the whole domain of the potential; we can increase the accuracy of this solution by taking new differential consequences into account.

Keywords: WKB method, Riccati equation, differential consequences of the Riccati equation, Maslov method, turning point, Planck constant, Airy function

DOI: https://doi.org/10.4213/mzm8658

Full text: PDF file (480 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2011, 89:6, 885–892

Bibliographic databases:

UDC: 517.9
Received: 20.07.2009

Citation: N. L. Chuprikov, “The WKB Method and Differential Consequences of the Riccati Equation”, Mat. Zametki, 89:6 (2011), 929–937; Math. Notes, 89:6 (2011), 885–892

Citation in format AMSBIB
\Bibitem{Chu11}
\by N.~L.~Chuprikov
\paper The WKB Method and Differential Consequences of the Riccati Equation
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 6
\pages 929--937
\mathnet{http://mi.mathnet.ru/mz8658}
\crossref{https://doi.org/10.4213/mzm8658}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2908148}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 6
\pages 885--892
\crossref{https://doi.org/10.1134/S0001434611050294}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000292216000029}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959664114}


Linking options:
  • http://mi.mathnet.ru/eng/mz8658
  • https://doi.org/10.4213/mzm8658
  • http://mi.mathnet.ru/eng/mz/v89/i6/p929

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:388
    Full text:120
    References:37
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020