RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2010, Volume 88, Issue 6, Pages 897–901 (Mi mz8708)  

On the Quantitative Sharpening of a Theorem of Birch

T. Yu. Kulikova

Publishing House "Nauka"

Abstract: The author's results concerning the null subspaces of arbitrary odd polynomials in several variables are generalized to the case of common null subspaces for several odd polynomials as well as to the complex case.

Keywords: homogeneous polynomials, Birch's theorem, polynomials of odd degree, ordered partition of a set

DOI: https://doi.org/10.4213/mzm8708

Full text: PDF file (426 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2010, 88:6, 855–859

Bibliographic databases:

UDC: 517.5
Received: 02.02.2010

Citation: T. Yu. Kulikova, “On the Quantitative Sharpening of a Theorem of Birch”, Mat. Zametki, 88:6 (2010), 897–901; Math. Notes, 88:6 (2010), 855–859

Citation in format AMSBIB
\Bibitem{Kul10}
\by T.~Yu.~Kulikova
\paper On the Quantitative Sharpening of a Theorem of Birch
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 6
\pages 897--901
\mathnet{http://mi.mathnet.ru/mz8708}
\crossref{https://doi.org/10.4213/mzm8708}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2868412}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 6
\pages 855--859
\crossref{https://doi.org/10.1134/S0001434610110258}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288489700025}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651245934}


Linking options:
  • http://mi.mathnet.ru/eng/mz8708
  • https://doi.org/10.4213/mzm8708
  • http://mi.mathnet.ru/eng/mz/v88/i6/p897

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:247
    Full text:57
    References:32
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019