RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2010, Volume 87, Issue 6, Pages 885–899 (Mi mz8734)  

This article is cited in 1 scientific paper (total in 1 paper)

A Small Decrease in the Degree of a Polynomial with a Given Sign Function Can Exponentially Increase Its Weight and Length

V. V. Podolskiia, A. A. Sherstovb

a M. V. Lomonosov Moscow State University
b University of Texas in Austin

Abstract: A Boolean function $f\colon\{-1,+1\}^n\to\{-1,+1\}$ is called the sign function of an integer-valued polynomial $p(x)$ if $f(x)=\operatorname{sgn}(p(x))$ for all $x\in\{-1,+1\}^n$. In this case, the polynomial $p(x)$ is called a perceptron for the Boolean function $f$. The weight of a perceptron is the sum of absolute values of the coefficients of $p$. We prove that, for a given function, a small change in the degree of a perceptron can strongly affect the value of the required weight. More precisely, for each $d=1,2,…,n-1$, we explicitly construct a function $f\colon\{-1,+1\}^n\to\{-1,+1\}$ that requires a weight of the form $\exp\{\Theta(n)\}$ when it is represented by a degree $d$ perceptron, and that can be represented by a degree $d+1$ perceptron with weight equal to only $O(n^2)$. The lower bound $\exp\{\Theta(n)\}$ for the degree $d$ also holds for the size of the depth 2 Boolean circuit with a majority function at the top and arbitrary gates of input degree $d$ at the bottom. This gap in the weight values is exponentially larger than those that have been previously found. A similar result is proved for the perceptron length, i.e., for the number of monomials contained in it.

Keywords: Boolean function, integer-valued polynomial, sign function, perceptron, Boolean circuit, complexity theory, discrete Fourier transform, exponential gap

DOI: https://doi.org/10.4213/mzm8734

Full text: PDF file (610 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2010, 87:6, 860–873

Bibliographic databases:

UDC: 519.712.3
Received: 20.06.2009

Citation: V. V. Podolskii, A. A. Sherstov, “A Small Decrease in the Degree of a Polynomial with a Given Sign Function Can Exponentially Increase Its Weight and Length”, Mat. Zametki, 87:6 (2010), 885–899; Math. Notes, 87:6 (2010), 860–873

Citation in format AMSBIB
\Bibitem{PodShe10}
\by V.~V.~Podolskii, A.~A.~Sherstov
\paper A Small Decrease in the Degree of a Polynomial with a Given Sign Function Can Exponentially Increase Its Weight and Length
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 6
\pages 885--899
\mathnet{http://mi.mathnet.ru/mz8734}
\crossref{https://doi.org/10.4213/mzm8734}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2840383}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 6
\pages 860--873
\crossref{https://doi.org/10.1134/S0001434610050263}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000279600700026}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954407144}


Linking options:
  • http://mi.mathnet.ru/eng/mz8734
  • https://doi.org/10.4213/mzm8734
  • http://mi.mathnet.ru/eng/mz/v87/i6/p885

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Podolskii V.V., “Lower Bound on Weights of Large Degree Threshold Functions”, Log. Meth. Comput. Sci., 9:2 (2013), 13  crossref  mathscinet  zmath  isi  elib  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:506
    Full text:64
    References:30
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020