RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 3, Pages 447–458 (Mi mz8750)  

This article is cited in 2 scientific papers (total in 2 papers)

Integral Properties of the Classical Warping Function of a Simply Connected Domain

R. G. Salakhudinov

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University

Abstract: Let $u(z,G)$ be the classical warping function of a simply connected domain $G$. We prove that the $L^p$-norms of the warping function with different exponents are related by a sharp isoperimetric inequality, including the functional $u(G)=\sup_{x\in G}u(x,G)$. A particular case of our result is the classical Payne inequality for the torsional rigidity of a domain. On the basis of the warping function, we construct a new physical functional possessing the isoperimetric monotonicity property. For a class of integrals depending on the warping function, we also obtain a priori estimates in terms of the $L^p$-norms of the warping function as well as the functional $u(G)$. In the proof, we use the estimation technique on level lines proposed by Payne.

Keywords: warping function, isoperimetric inequality, isoperimetric monotonicity, torsional rigidity, Payne inequality, level lines, Schwartz symmetrization

DOI: https://doi.org/10.4213/mzm8750

Full text: PDF file (491 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:3, 412–421

Bibliographic databases:

UDC: 517.5+517.956.225
Received: 23.10.2009

Citation: R. G. Salakhudinov, “Integral Properties of the Classical Warping Function of a Simply Connected Domain”, Mat. Zametki, 92:3 (2012), 447–458; Math. Notes, 92:3 (2012), 412–421

Citation in format AMSBIB
\Bibitem{Sal12}
\by R.~G.~Salakhudinov
\paper Integral Properties of the Classical Warping Function of a Simply Connected Domain
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 3
\pages 447--458
\mathnet{http://mi.mathnet.ru/mz8750}
\crossref{https://doi.org/10.4213/mzm8750}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201580}
\zmath{https://zbmath.org/?q=an:1262.35008}
\elib{http://elibrary.ru/item.asp?id=20731604}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 3
\pages 412--421
\crossref{https://doi.org/10.1134/S0001434612090143}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000310228200014}
\elib{http://elibrary.ru/item.asp?id=20497620}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867955057}


Linking options:
  • http://mi.mathnet.ru/eng/mz8750
  • https://doi.org/10.4213/mzm8750
  • http://mi.mathnet.ru/eng/mz/v92/i3/p447

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. G. Salakhudinov, “Payne type inequalities for $L^p$-norms of the warping functions”, J. Math. Anal. Appl., 410:2 (2014), 659–669  crossref  mathscinet  zmath  isi  elib  scopus
    2. R. G. Salakhudinov, “Some properties of functionals on level sets”, Ufa Math. J., 11:2 (2019), 114–124  mathnet  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:370
    Full text:83
    References:39
    First page:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020