RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2015, Volume 97, Issue 4, Pages 620–628 (Mi mz8789)  

This article is cited in 2 scientific papers (total in 2 papers)

Dirichlet Problem for Second-Order Ordinary Differential Equations with Segment-Order Derivative

B. I. Efendiev

Scientific Research Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Centre of the Russian Academy of Sciences

Abstract: The fundamental solution of a second-order ordinary differential equation with segment-order derivative is constructed. The Green function of the Dirichlet problem is determined on the basis the fundamental solution and the solution of the Dirichlet problem for the equation under study is obtained under the solvability condition.

Keywords: second-order ordinary differential equation, Dirichlet problem, segment-order derivative, Green function, fundamental solution, Euler gamma function.

Funding Agency Grant Number
Russian Foundation for Basic Research 09-01-96510
This work was supported by the Russian Foundation for Basic Research (grant no. 09-01-96510).


DOI: https://doi.org/10.4213/mzm8789

Full text: PDF file (460 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2015, 97:4, 632–640

Bibliographic databases:

Document Type: Article
UDC: 517.927.2
Received: 10.12.2009
Revised: 20.01.2014

Citation: B. I. Efendiev, “Dirichlet Problem for Second-Order Ordinary Differential Equations with Segment-Order Derivative”, Mat. Zametki, 97:4 (2015), 620–628; Math. Notes, 97:4 (2015), 632–640

Citation in format AMSBIB
\Bibitem{Efe15}
\by B.~I.~Efendiev
\paper Dirichlet Problem for Second-Order Ordinary Differential Equations with Segment-Order Derivative
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 4
\pages 620--628
\mathnet{http://mi.mathnet.ru/mz8789}
\crossref{https://doi.org/10.4213/mzm8789}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3370547}
\zmath{https://zbmath.org/?q=an:06455297}
\elib{http://elibrary.ru/item.asp?id=23421549}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 4
\pages 632--640
\crossref{https://doi.org/10.1134/S0001434615030347}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000353566800034}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928651696}


Linking options:
  • http://mi.mathnet.ru/eng/mz8789
  • https://doi.org/10.4213/mzm8789
  • http://mi.mathnet.ru/eng/mz/v97/i4/p620

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. I. Efendiev, “Lagrange formula for ordinary continual second-order differential equations”, Differ. Equ., 53:6 (2017), 736–744  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    2. B. I. Efendiev, “The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation”, Math. Notes, 103:2 (2018), 290–296  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:201
    Full text:9
    References:42
    First page:44

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019