RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. заметки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Матем. заметки, 2010, том 88, выпуск 3, страницы 325–339 (Mi mz8807)  

Об аддитивной проблеме И. М. Виноградова

Г. И. Архиповa, В. Н. Чубариковb

a Математический институт им. В. А. Стеклова РАН
b Московский государственный университет им. М. В. Ломоносова

Аннотация: Сформулируем основной результат статьи.
Пусть набор $N_1,…,N_n$ допустим. Тогда в представлении
$$ \begin{cases} p_1+p_2+…+p_k=N_1,
……………………
p_1^n+p_2^n+…+p_k^n=N_n, \end{cases} $$
где неизвестные $p_1,p_2,…,p_k$ принимают значения простых чисел при условии $p_s>n+1$, $s=1,…,k$, число $k$ имеет вид
$$ k=k_0+b(n)s, $$
где $s$ — неотрицательное целое число. При этом, если $k_0\ge a$, то в представлении для $k$ можно положить $s=0$, а если $k_0\le a-1$, то при данном $k_0$ существуют допустимые наборы $(N_1,…,N_n)$, которые не представимы в виде $k_0$ слагаемых требуемого вида, но могут быть представлены в количестве $k_0+b(n)$ слагаемых.
Библиография: 18 названий.

DOI: https://doi.org/10.4213/mzm8807

Полный текст: PDF файл (495 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Mathematical Notes, 2010, 88:3, 295–307

Реферативные базы данных:

Тип публикации: Статья
УДК: 511
Поступило: 29.12.2009

Образец цитирования: Г. И. Архипов, В. Н. Чубариков, “Об аддитивной проблеме И. М. Виноградова”, Матем. заметки, 88:3 (2010), 325–339; Math. Notes, 88:3 (2010), 295–307

Цитирование в формате AMSBIB
\RBibitem{ArkChu10}
\by Г.~И.~Архипов, В.~Н.~Чубариков
\paper Об аддитивной проблеме И.\,М.~Виноградова
\jour Матем. заметки
\yr 2010
\vol 88
\issue 3
\pages 325--339
\mathnet{http://mi.mathnet.ru/mz8807}
\crossref{https://doi.org/10.4213/mzm8807}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2882172}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 3
\pages 295--307
\crossref{https://doi.org/10.1134/S0001434610090014}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000284073100001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78249269783}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/mz8807
  • https://doi.org/10.4213/mzm8807
  • http://mi.mathnet.ru/rus/mz/v88/i3/p325

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Просмотров:
    Эта страница:658
    Полный текст:104
    Литература:77
    Первая стр.:73

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019