RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 2, Pages 276–290 (Mi mz8882)  

This article is cited in 1 scientific paper (total in 1 paper)

Strong Maximum Principle for an Elliptic Operator on a Stratified Set

S. N. Oshchepkovaa, O. M. Penkina, D. Savasteev

a Belgorod State University

Abstract: We derive a necessary condition for an extremum for functions on stratified sets in terms of integrals of the normal derivative over spheres and use this condition to prove the strong maximum principle for the divergence operator on a stratified set.

Keywords: stratified set, extremum, necessary condition, divergence operator, strong maximum principle

DOI: https://doi.org/10.4213/mzm8882

Full text: PDF file (569 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:2, 249–259

Bibliographic databases:

Document Type: Article
UDC: 517.956.4
Received: 18.06.2010

Citation: S. N. Oshchepkova, O. M. Penkin, D. Savasteev, “Strong Maximum Principle for an Elliptic Operator on a Stratified Set”, Mat. Zametki, 92:2 (2012), 276–290; Math. Notes, 92:2 (2012), 249–259

Citation in format AMSBIB
\Bibitem{OshPenSav12}
\by S.~N.~Oshchepkova, O.~M.~Penkin, D.~Savasteev
\paper Strong Maximum Principle for an~Elliptic Operator on a~Stratified Set
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 2
\pages 276--290
\mathnet{http://mi.mathnet.ru/mz8882}
\crossref{https://doi.org/10.4213/mzm8882}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201561}
\zmath{https://zbmath.org/?q=an:06138381}
\elib{http://elibrary.ru/item.asp?id=20731587}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 2
\pages 249--259
\crossref{https://doi.org/10.1134/S0001434612070267}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000308042500026}
\elib{http://elibrary.ru/item.asp?id=20473346}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865721420}


Linking options:
  • http://mi.mathnet.ru/eng/mz8882
  • https://doi.org/10.4213/mzm8882
  • http://mi.mathnet.ru/eng/mz/v92/i2/p276

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. N. Oshchepkova, O. M. Penkin, D. Savasteev, “The Normal Derivative Lemma for the Laplacian on a Polyhedral Set”, Math. Notes, 96:1 (2014), 122–129  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:282
    Full text:42
    References:34
    First page:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019