|
This article is cited in 2 scientific papers (total in 2 papers)
On the Finite-Increment Theorem for Complex Polynomials
V. N. Dubinin Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
Abstract:
For an arbitrary polynomial $P$ of degree at most $n$ and any points $z_1$ and $z_2$ on the complex plane, we establish estimates of the form $$ |P(z_1)-P(z_2)|\ge d_n|P'(z_1)||z_1-\zeta|, $$ where $\zeta$ is one of the roots of the equation $P(z)=P(z_2)$, and $d_n$ is a positive constant depending only on the number $n$.
Keywords:
complex polynomial, finite-increment theorem, Chebyshev polynomial, Zhukovskii function, Markov's inequality, conformal mapping, covering theorem, Steiner symmetrization, conformal capacity
DOI:
https://doi.org/10.4213/mzm8909
Full text:
PDF file (498 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2010, 88:5, 647–654
Bibliographic databases:
UDC:
512.62+517.54 Received: 29.10.2010 Revised: 27.01.2010
Citation:
V. N. Dubinin, “On the Finite-Increment Theorem for Complex Polynomials”, Mat. Zametki, 88:5 (2010), 673–682; Math. Notes, 88:5 (2010), 647–654
Citation in format AMSBIB
\Bibitem{Dub10}
\by V.~N.~Dubinin
\paper On the Finite-Increment Theorem for Complex Polynomials
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 5
\pages 673--682
\mathnet{http://mi.mathnet.ru/mz8909}
\crossref{https://doi.org/10.4213/mzm8909}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2868391}
\zmath{https://zbmath.org/?q=an:05980708}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 5
\pages 647--654
\crossref{https://doi.org/10.1134/S0001434610110040}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288489700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651240905}
Linking options:
http://mi.mathnet.ru/eng/mz8909https://doi.org/10.4213/mzm8909 http://mi.mathnet.ru/eng/mz/v88/i5/p673
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684
-
Protin F., “Ls Condition For Filled Julia Sets in C”, Ann. Mat. Pura Appl., 197:6 (2018), 1845–1854
|
Number of views: |
This page: | 440 | Full text: | 144 | References: | 44 | First page: | 9 |
|