RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2011, Volume 89, Issue 2, Pages 319–320 (Mi mz8940)  

This article is cited in 3 scientific papers (total in 3 papers)

Brief Communications

New Lower Bounds for the Independence Numbers of Distance Graphs with Vertices in $\{-1,0,1\}^n$

V. F. Moskvaa, A. M. Raigorodskiib

a Moscow Institute of Physics and Technology
b M. V. Lomonosov Moscow State University

Keywords: distance graph, independence number, Borsuk problem, Nelson–Erdős–Hadwiger problem

DOI: https://doi.org/10.4213/mzm8940

Full text: PDF file (301 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2011, 89:2, 307–308

Bibliographic databases:

Received: 10.06.2010

Citation: V. F. Moskva, A. M. Raigorodskii, “New Lower Bounds for the Independence Numbers of Distance Graphs with Vertices in $\{-1,0,1\}^n$”, Mat. Zametki, 89:2 (2011), 319–320; Math. Notes, 89:2 (2011), 307–308

Citation in format AMSBIB
\Bibitem{MosRai11}
\by V.~F.~Moskva, A.~M.~Raigorodskii
\paper New Lower Bounds for the Independence Numbers of Distance Graphs with Vertices in~$\{-1,0,1\}^n$
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 2
\pages 319--320
\mathnet{http://mi.mathnet.ru/mz8940}
\crossref{https://doi.org/10.4213/mzm8940}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2840429}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 2
\pages 307--308
\crossref{https://doi.org/10.1134/S0001434611010366}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288653100036}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952432802}


Linking options:
  • http://mi.mathnet.ru/eng/mz8940
  • https://doi.org/10.4213/mzm8940
  • http://mi.mathnet.ru/eng/mz/v89/i2/p319

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. I. Ponomarenko, A. M. Raigorodskii, “New Upper Bounds for the Independence Numbers of Graphs with Vertices in $\{-1,0,1\}^n$ and Their Applications to Problems of the Chromatic Numbers of Distance Graphs”, Math. Notes, 96:1 (2014), 140–148  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Bogolubsky L.I., Raigorodskii A.M., “on the Measurable Chromatic Number of a Space of Dimension N a Parts Per Thousand Currency Sign 24”, Dokl. Math., 92:3 (2015), 761–763  crossref  mathscinet  zmath  isi  scopus
    3. Frankl P., Kupayskii A., “Erdos-Ko-Rado Theorem For (0, +/- 1)-Vectors”, J. Comb. Theory Ser. A, 155 (2018), 157–179  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:448
    Full text:126
    References:50
    First page:64

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020