|
This article is cited in 4 scientific papers (total in 4 papers)
Brief Communications
Lower Bound for the Discrete Norm of a Polynomial on the Circle
V. N. Dubinin Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
Keywords:
discrete norm of a polynomial, uniform grid, uniform norm on a set, Schwartz lemma, conformal mapping, analytic continuation, maximum principle
DOI:
https://doi.org/10.4213/mzm8942
Full text:
PDF file (337 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2011, 90:2, 284–287
Bibliographic databases:
Received: 14.01.2011
Citation:
V. N. Dubinin, “Lower Bound for the Discrete Norm of a Polynomial on the Circle”, Mat. Zametki, 90:2 (2011), 306–309; Math. Notes, 90:2 (2011), 284–287
Citation in format AMSBIB
\Bibitem{Dub11}
\by V.~N.~Dubinin
\paper Lower Bound for the Discrete Norm of a Polynomial on the Circle
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 2
\pages 306--309
\mathnet{http://mi.mathnet.ru/mz8942}
\crossref{https://doi.org/10.4213/mzm8942}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2918446}
\zmath{https://zbmath.org/?q=an:06014008}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 2
\pages 284--287
\crossref{https://doi.org/10.1134/S0001434611070285}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000294363500028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052049068}
Linking options:
http://mi.mathnet.ru/eng/mz8942https://doi.org/10.4213/mzm8942 http://mi.mathnet.ru/eng/mz/v90/i2/p306
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684
-
S. I. Kalmykov, “Comparison of discrete and uniform norms of polynomials on a segment and a circle arc”, J. Math. Sci. (N. Y.), 193:1 (2013), 100–105
-
Fournier R., Ruscheweyh S., Salinas C. L., “On a discrete norm for polynomials”, J. Math. Anal. Appl., 396:2 (2012), 425–433
-
Guruswami V., Zuckerman D., “Robust Fourier and Polynomial Curve Fitting”, 2016 IEEE 57Th Annual Symposium on Foundations of Computer Science (Focs), Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2016, 751–759
|
Number of views: |
This page: | 342 | Full text: | 113 | References: | 37 | First page: | 28 |
|