RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 91, Issue 6, Pages 803–812 (Mi mz8958)  

On a Numerical Method for Constructing a Positive Solution of the Two-Point Boundary-Value Problem for a Second-Order Nonlinear Differential Equation

E. I. Abduragimov

Daghestan Scientific Centre of the Russian Academy of Sciences

Abstract: An iterative method is proposed for finding an approximation to the positive solution of the two-point boundary-value problem
$$ y"+c(x)y^m=0,\quad 0<x<1,\qquad y(0)=y(1)=0, $$
where $m=\mathrm{const}>1$ and $c(x)$ is a continuous nonnegative function on $[0,1]$. The convergence of this method is proved. An error estimate is also obtained.

Keywords: second-order nonlinear differential equation, two-point boundary-value problem, elliptic differential equation, Cauchy problem, Green function

DOI: https://doi.org/10.4213/mzm8958

Full text: PDF file (506 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 91:6, 755–763

Bibliographic databases:

Document Type: Article
UDC: 519.62
Received: 04.08.2010

Citation: E. I. Abduragimov, “On a Numerical Method for Constructing a Positive Solution of the Two-Point Boundary-Value Problem for a Second-Order Nonlinear Differential Equation”, Mat. Zametki, 91:6 (2012), 803–812; Math. Notes, 91:6 (2012), 755–763

Citation in format AMSBIB
\Bibitem{Abd12}
\by E.~I.~Abduragimov
\paper On a Numerical Method for Constructing a Positive Solution of the Two-Point Boundary-Value Problem for a Second-Order Nonlinear Differential Equation
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 6
\pages 803--812
\mathnet{http://mi.mathnet.ru/mz8958}
\crossref{https://doi.org/10.4213/mzm8958}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201517}
\elib{http://elibrary.ru/item.asp?id=20731546}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 6
\pages 755--763
\crossref{https://doi.org/10.1134/S0001434612050215}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000305984400021}
\elib{http://elibrary.ru/item.asp?id=24952919}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864235834}


Linking options:
  • http://mi.mathnet.ru/eng/mz8958
  • https://doi.org/10.4213/mzm8958
  • http://mi.mathnet.ru/eng/mz/v91/i6/p803

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:325
    Full text:27
    References:23
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019