RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 1, Pages 19–26 (Mi mz8965)  

This article is cited in 1 scientific paper (total in 1 paper)

Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex

N. V. Baidakovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University, Ekaterinburg

Abstract: For an interpolation process with algebraic polynomials of degree $n$ on equidistant nodes of an $m$-simplex for $m\ge 2$, we obtain a pointwise lower bound for the Lebesgue function similar to the well-known estimate for interpolation on a closed interval.

Keywords: interpolation process, equidistant nodes, algebraic polynomial, Lebesgue function, $m$-simplex, Lebesgue constant

DOI: https://doi.org/10.4213/mzm8965

Full text: PDF file (437 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:1, 16–22

Bibliographic databases:

UDC: 517.51
Received: 27.10.2010

Citation: N. V. Baidakova, “Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex”, Mat. Zametki, 92:1 (2012), 19–26; Math. Notes, 92:1 (2012), 16–22

Citation in format AMSBIB
\Bibitem{Bai12}
\by N.~V.~Baidakova
\paper Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 1
\pages 19--26
\mathnet{http://mi.mathnet.ru/mz8965}
\crossref{https://doi.org/10.4213/mzm8965}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201537}
\zmath{https://zbmath.org/?q=an:1259.41003}
\elib{http://elibrary.ru/item.asp?id=20731564}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 1
\pages 16--22
\crossref{https://doi.org/10.1134/S0001434612070024}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000308042500002}
\elib{http://elibrary.ru/item.asp?id=20476630}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865765597}


Linking options:
  • http://mi.mathnet.ru/eng/mz8965
  • https://doi.org/10.4213/mzm8965
  • http://mi.mathnet.ru/eng/mz/v92/i1/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Shakirov, “Lebesgue functions corresponding to a family of Lagrange interpolation polynomials”, Russian Math. (Iz. VUZ), 57:7 (2013), 66–76  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:300
    Full text:83
    References:42
    First page:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020