RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 3, Pages 343–360 (Mi mz9020)  

This article is cited in 3 scientific papers (total in 3 papers)

A Multidimensional Generalization of Lagrange's Theorem on Continued Fractions

A. V. Bykovskaya

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A multidimensional geometric analog of Lagrange's theorem on continued fractions is proposed. The multidimensional generalization of the geometric interpretation of a continued fraction uses the notion of a Klein polyhedron, that is, the convex hull of the set of nonzero points in the lattice $\mathbb Z^n$ contained inside some $n$-dimensional simplicial cone with vertex at the origin. A criterion for the semiperiodicity of the boundary of a Klein polyhedron is obtained, and a statement about the nonempty intersection of the boundaries of the Klein polyhedra corresponding to a given simplicial cone and to a certain modification of this cone is proved.

Keywords: Lagrange's theorem on continued fractions, Klein polyhedron, simplicial cone, sail, hyperbolic operator, eigenbasis, eigencone, integer lattice, semiperiodic boundary

DOI: https://doi.org/10.4213/mzm9020

Full text: PDF file (553 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:3, 312–326

Bibliographic databases:

UDC: 511.9+511.48
Received: 20.12.2010
Revised: 04.04.2011

Citation: A. V. Bykovskaya, “A Multidimensional Generalization of Lagrange's Theorem on Continued Fractions”, Mat. Zametki, 92:3 (2012), 343–360; Math. Notes, 92:3 (2012), 312–326

Citation in format AMSBIB
\Bibitem{Byk12}
\by A.~V.~Bykovskaya
\paper A Multidimensional Generalization of Lagrange's Theorem on Continued Fractions
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 3
\pages 343--360
\mathnet{http://mi.mathnet.ru/mz9020}
\crossref{https://doi.org/10.4213/mzm9020}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201569}
\zmath{https://zbmath.org/?q=an:1273.11107}
\elib{http://elibrary.ru/item.asp?id=20731594}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 3
\pages 312--326
\crossref{https://doi.org/10.1134/S0001434612090039}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000310228200003}
\elib{http://elibrary.ru/item.asp?id=20497539}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867926486}


Linking options:
  • http://mi.mathnet.ru/eng/mz9020
  • https://doi.org/10.4213/mzm9020
  • http://mi.mathnet.ru/eng/mz/v92/i3/p343

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. A. A. Illarionov, “Distribution of facets of higher-dimensional Klein polyhedra”, Sb. Math., 209:1 (2018), 56–70  mathnet  crossref  crossref  adsnasa  isi  elib
    3. A. A. Illarionov, “The statistical properties of 3D Klein polyhedra”, Sb. Math., 211:5 (2020), 689–708  mathnet  crossref  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:465
    Full text:105
    References:37
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020