Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2011, Volume 89, Issue 3, Pages 378–383 (Mi mz9047)  

Existence of a Trade-Off Factorization of a Partially $4$-Homogeneous Graph

A. M. Magomedov

Daghestan State University

Abstract: We consider a graph $G$ with $2\kappa$ vertices of degree $5$ and $\kappa$ vertices of degree $2$, all other vertices being of degree $4$. In connection with the timetable optimization problem, we study necessary and sufficient conditions for the existence of a factorization of $G$ into two skeleton subgraphs whose edge sets are disjoint and have the same cardinality and, for each vertex of the graph, the numbers of edges incident to this vertex in these subgraphs differ at most by unity.

Keywords: timetable optimization, partially homogeneous graph, skeleton subgraph, trade-off factorization, Petersen criterion, Eulerian graph

DOI: https://doi.org/10.4213/mzm9047

Full text: PDF file (423 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2011, 89:3, 361–365

Bibliographic databases:

UDC: 519.1
Received: 30.11.2007
Revised: 11.03.2010

Citation: A. M. Magomedov, “Existence of a Trade-Off Factorization of a Partially $4$-Homogeneous Graph”, Mat. Zametki, 89:3 (2011), 378–383; Math. Notes, 89:3 (2011), 361–365

Citation in format AMSBIB
\Bibitem{Mag11}
\by A.~M.~Magomedov
\paper Existence of a Trade-Off Factorization of a Partially $4$-Homogeneous Graph
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 3
\pages 378--383
\mathnet{http://mi.mathnet.ru/mz9047}
\crossref{https://doi.org/10.4213/mzm9047}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2856719}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 3
\pages 361--365
\crossref{https://doi.org/10.1134/S0001434611030072}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000290038700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955619179}


Linking options:
  • http://mi.mathnet.ru/eng/mz9047
  • https://doi.org/10.4213/mzm9047
  • http://mi.mathnet.ru/eng/mz/v89/i3/p378

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:259
    Full text:137
    References:43
    First page:12

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021