RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2011, Volume 89, Issue 3, Pages 393–409 (Mi mz9048)  

This article is cited in 4 scientific papers (total in 4 papers)

Weighted Identities for the Solutions of Generalized Korteweg–de Vries Equations

S. I. Pokhozhaev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Consider the Korteweg–de Vries equation $u_t+u_{xxx}+uu_{x}=0$ and its generalization $u_t+u_{xxx}+f(u)_{x}=0$. For the solutions of these equations, weighted identities (differential and integral) are obtained. These identities make it possible to establish the blow-up (in finite time) of the solutions of certain boundary-value problems.

Keywords: Korteweg–de Vries equation, initial boundary-value problem, weighted differential inequality, weighted integral inequality, blow-up of solutions, Hölder's inequality, Young's inequality, Dirichlet boundary condition

DOI: https://doi.org/10.4213/mzm9048

Full text: PDF file (506 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2011, 89:3, 382–396

Bibliographic databases:

Document Type: Article
UDC: 517.954
Received: 08.09.2010

Citation: S. I. Pokhozhaev, “Weighted Identities for the Solutions of Generalized Korteweg–de Vries Equations”, Mat. Zametki, 89:3 (2011), 393–409; Math. Notes, 89:3 (2011), 382–396

Citation in format AMSBIB
\Bibitem{Pok11}
\by S.~I.~Pokhozhaev
\paper Weighted Identities for the Solutions of Generalized Korteweg--de Vries Equations
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 3
\pages 393--409
\mathnet{http://mi.mathnet.ru/mz9048}
\crossref{https://doi.org/10.4213/mzm9048}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2856721}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 3
\pages 382--396
\crossref{https://doi.org/10.1134/S0001434611030102}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000290038700010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955639218}


Linking options:
  • http://mi.mathnet.ru/eng/mz9048
  • https://doi.org/10.4213/mzm9048
  • http://mi.mathnet.ru/eng/mz/v89/i3/p393

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. I. Pohozaev, “On the absence of global solutions of the Korteweg–de Vries equation”, Journal of Mathematical Sciences, 190:1 (2013), 147–156  mathnet  crossref  mathscinet
    2. M. O. Korpusov, “Blowup of solutions of nonlinear equations and systems of nonlinear equations in wave theory”, Theoret. and Math. Phys., 174:3 (2013), 307–314  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. M. O. Korpusov, E. V. Yushkov, “Solution blowup for systems of shallow-water equations”, Theoret. and Math. Phys., 177:2 (2013), 1505–1514  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. M. O. Korpusov, E. V. Yushkov, “Local solvability and blow-up for Benjamin-Bona-Mahony-Burgers, Rosenau-Burgers and Korteweg-de Vries-Benjamin-Bona-Mahony equations”, Electron. J. Differential Equations, 2014, 69, 16 pp.  mathscinet  zmath  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:403
    Full text:73
    References:28
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019