RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 94, Issue 3, Pages 331–337 (Mi mz9074)  

This article is cited in 1 scientific paper (total in 1 paper)

Integral Estimates of Lengths of Level Lines of Rational Functions and Zolotarev's Problem

V. I. Danchenko

Vladimir

Abstract: Integral estimates of lengths of level lines (lemniscates) of rational functions of a complex variable are obtained. These estimates are related to the problem of separation of compact sets by rational functions and to Zolotarev's problem.

Keywords: integral estimate, rational function, separation of compact sets.

DOI: https://doi.org/10.4213/mzm9074

Full text: PDF file (437 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 94:3, 314–319

Bibliographic databases:

UDC: 517.535+517.546
Received: 21.03.2011
Revised: 23.12.2012

Citation: V. I. Danchenko, “Integral Estimates of Lengths of Level Lines of Rational Functions and Zolotarev's Problem”, Mat. Zametki, 94:3 (2013), 331–337; Math. Notes, 94:3 (2013), 314–319

Citation in format AMSBIB
\Bibitem{Dan13}
\by V.~I.~Danchenko
\paper Integral Estimates of Lengths of Level Lines of Rational Functions and Zolotarev's Problem
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 3
\pages 331--337
\mathnet{http://mi.mathnet.ru/mz9074}
\crossref{https://doi.org/10.4213/mzm9074}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3206095}
\zmath{https://zbmath.org/?q=an:1282.30023}
\elib{https://elibrary.ru/item.asp?id=20731782}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 3
\pages 314--319
\crossref{https://doi.org/10.1134/S0001434613090022}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000326052400002}
\elib{https://elibrary.ru/item.asp?id=21885228}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886450331}


Linking options:
  • http://mi.mathnet.ru/eng/mz9074
  • https://doi.org/10.4213/mzm9074
  • http://mi.mathnet.ru/eng/mz/v94/i3/p331

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Ekstremalnye i approksimativnye svoistva naiprosteishikh drobei”, Izv. vuzov. Matem., 2018, no. 12, 9–49  mathnet
  • Математические заметки Mathematical Notes
    Number of views:
    This page:323
    Full text:75
    References:56
    First page:47

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020