|
This article is cited in 7 scientific papers (total in 7 papers)
Stochastic Monotonicity and Duality for One-Dimensional Markov Processes
V. N. Kolokoltsovab a University of Warwick, United Kingdom
b Moscow Economical Institute
Abstract:
The theory of monotonicity and duality is developed for general one-dimensional Feller processes, extending the approach from [1]. Moreover it is shown that local monotonicity conditions (conditions on the Lévy kernel) are sufficient to prove the well-posedness of the corresponding Markov semigroup and process, including unbounded coefficients and processes on the half-line.
Keywords:
stochastic monotonicity, duality, one-dimensional Markov process, Lévy–Kchintchine type generator
DOI:
https://doi.org/10.4213/mzm9121
Full text:
PDF file (487 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2011, 89:5, 652–660
Bibliographic databases:
UDC:
519.248 Received: 17.05.2010 Revised: 11.12.2010
Citation:
V. N. Kolokoltsov, “Stochastic Monotonicity and Duality for One-Dimensional Markov Processes”, Mat. Zametki, 89:5 (2011), 694–704; Math. Notes, 89:5 (2011), 652–660
Citation in format AMSBIB
\Bibitem{Kol11}
\by V.~N.~Kolokoltsov
\paper Stochastic Monotonicity and Duality for One-Dimensional Markov Processes
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 5
\pages 694--704
\mathnet{http://mi.mathnet.ru/mz9121}
\crossref{https://doi.org/10.4213/mzm9121}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2858558}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 5
\pages 652--660
\crossref{https://doi.org/10.1134/S0001434611050063}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000292216000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959634783}
Linking options:
http://mi.mathnet.ru/eng/mz9121https://doi.org/10.4213/mzm9121 http://mi.mathnet.ru/eng/mz/v89/i5/p694
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Kolokoltsov V., Lee R.X., “Stochastic Duality of Markov Processes: a Study via Generators”, Stoch. Anal. Appl., 31:6 (2013), 992–1023
-
Kolokoltsov V., “on Fully Mixed and Multidimensional Extensions of the Caputo and Riemann-Liouville Derivatives, Related Markov Processes and Fractional Differential Equations”, Fract. Calc. Appl. Anal., 18:4 (2015), 1039–1073
-
Kolokoltsov V.N., “Stochastic Monotonicity and Duality of Kth Order With Application To Put-Call Symmetry of Powered Options”, J. Appl. Probab., 52:1 (2015), 82–101
-
Sturm A., Swart J.M., “Pathwise Duals of Monotone and Additive Markov Processes”, J. Theor. Probab., 31:2 (2018), 932–983
-
Baeumer B., Kovacs M., Sankaranarayanan H., “Fractional Partial Differential Equations With Boundary Conditions”, J. Differ. Equ., 264:2 (2018), 1377–1410
-
Goffard P.-O., Sarantsev A., “Exponential Convergence Rate of Ruin Probabilities For Level-Dependent Levy-Driven Risk Processes”, J. Appl. Probab., 56:4 (2019), PII S0021900219000718, 1244–1268
-
Foucart C., Ma Ch., Mallein B., “Coalescences in Continuous-State Branching Processes”, Electron. J. Probab., 24 (2019), 103
|
Number of views: |
This page: | 275 | Full text: | 98 | References: | 34 | First page: | 9 |
|