RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2011, Volume 89, Issue 5, Pages 797–800 (Mi mz9122)  

This article is cited in 3 scientific papers (total in 3 papers)

Brief Communications

Degenerate Wave Equation with Localized Initial Data: Asymptotic Solutions Corresponding to Various Self-Adjoint Extensions

V. E. Nazaikinskiiab

a A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
b Moscow Institute of Physics and Technology

Keywords: wave equation, degeneration, localized initial data, asymptotics, Maslov canonical operator, Cauchy problem, self-adjoint extension

DOI: https://doi.org/10.4213/mzm9122

Full text: PDF file (389 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2011, 89:5, 749–753

Bibliographic databases:

Received: 18.11.2010
Revised: 07.12.2010

Citation: V. E. Nazaikinskii, “Degenerate Wave Equation with Localized Initial Data: Asymptotic Solutions Corresponding to Various Self-Adjoint Extensions”, Mat. Zametki, 89:5 (2011), 797–800; Math. Notes, 89:5 (2011), 749–753

Citation in format AMSBIB
\Bibitem{Naz11}
\by V.~E.~Nazaikinskii
\paper Degenerate Wave Equation with Localized Initial Data: Asymptotic Solutions Corresponding to Various Self-Adjoint Extensions
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 5
\pages 797--800
\mathnet{http://mi.mathnet.ru/mz9122}
\crossref{https://doi.org/10.4213/mzm9122}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2858567}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 5
\pages 749--753
\crossref{https://doi.org/10.1134/S0001434611050166}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000292216000016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959673967}


Linking options:
  • http://mi.mathnet.ru/eng/mz9122
  • https://doi.org/10.4213/mzm9122
  • http://mi.mathnet.ru/eng/mz/v89/i5/p797

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. E. Nazaikinskii, “The Maslov Canonical Operator on Lagrangian Manifolds in the Phase Space Corresponding to a Wave Equation Degenerating on the Boundary”, Math. Notes, 96:2 (2014), 248–260  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. V. E. Nazaikinskii, “Maslov's canonical operator for degenerate hyperbolic equations”, Russ. J. Math. Phys., 21:2 (2014), 289–290  crossref  mathscinet  zmath  isi  scopus
    3. A. I. Shafarevich, “Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points”, Proc. Steklov Inst. Math., 307 (2019), 294–302  mathnet  crossref  crossref  mathscinet  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:356
    Full text:91
    References:40
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021