RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 6, Pages 864–871 (Mi mz9193)  

On the Geometry of the Characteristic Vector of an $\mathit{lcQS}$-Manifold

V. F. Kirichenko, M. A. Terpstra

Moscow State Pedagogical University

Abstract: We study conditions under which the characteristic vector of a normal $\mathit{lcQS}$-manifold is a torsion-forming or even a concircular vector field. We prove that the following assertions are equivalent: an $\mathit{lcQS}$-structure is normal, and its characteristic vector is a torsion-forming vector field; an $\mathit{lcQS}$-structure is normal, and its characteristic vector is a concircular vector field; an $\mathit{lcQS}$-structure is locally conformally cosymplectic and has a closed contact form.

Keywords: Sasakian structure, $\mathit{AC}$-structure, $\mathit{lcQS}$-structure, Riemannian manifold, contact form characteristic vector, concircular vector field, torsion-forming vector field

DOI: https://doi.org/10.4213/mzm9193

Full text: PDF file (449 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:6, 773–778

Bibliographic databases:

UDC: 514.76
Received: 10.02.2011

Citation: V. F. Kirichenko, M. A. Terpstra, “On the Geometry of the Characteristic Vector of an $\mathit{lcQS}$-Manifold”, Mat. Zametki, 92:6 (2012), 864–871; Math. Notes, 92:6 (2012), 773–778

Citation in format AMSBIB
\Bibitem{KirTer12}
\by V.~F.~Kirichenko, M.~A.~Terpstra
\paper On the Geometry of the Characteristic Vector of an~$\mathit{lcQS}$-Manifold
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 6
\pages 864--871
\mathnet{http://mi.mathnet.ru/mz9193}
\crossref{https://doi.org/10.4213/mzm9193}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201488}
\zmath{https://zbmath.org/?q=an:06153811}
\elib{http://elibrary.ru/item.asp?id=20731645}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 6
\pages 773--778
\crossref{https://doi.org/10.1134/S0001434612110223}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314263900022}
\elib{http://elibrary.ru/item.asp?id=20484813}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871848228}


Linking options:
  • http://mi.mathnet.ru/eng/mz9193
  • https://doi.org/10.4213/mzm9193
  • http://mi.mathnet.ru/eng/mz/v92/i6/p864

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:265
    Full text:66
    References:34
    First page:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020