RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 94, Issue 2, Pages 246–265 (Mi mz9207)  

This article is cited in 4 scientific papers (total in 4 papers)

Affine-Homogeneous Real Hypersurfaces of Tube Type in $\mathbb{C}^{3}$

T. T. D. Nguen

Voronezh State Academy of Building and Architecture

Abstract: A general approach to describing affine-homogeneous hypersurfaces in the space $\mathbb C^3$ is proposed. In the 2-dimensional strictly pseudoconvex (SPC) case, within the framework of such an approach, the classification problem is solved for three separate classes constituting the whole set of manifolds under consideration. One of these is the class of surfaces of tube type.

Keywords: affine-homogeneous hypersurface of tube type, Lie algebra, 5-dimensional algebra, affine vector field.

DOI: https://doi.org/10.4213/mzm9207

Full text: PDF file (527 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 94:2, 238–254

Bibliographic databases:

UDC: 517.5+514+512
Received: 19.07.2011
Revised: 21.09.2012

Citation: T. T. D. Nguen, “Affine-Homogeneous Real Hypersurfaces of Tube Type in $\mathbb{C}^{3}$”, Mat. Zametki, 94:2 (2013), 246–265; Math. Notes, 94:2 (2013), 238–254

Citation in format AMSBIB
\Bibitem{Ngu13}
\by T.~T.~D.~Nguen
\paper Affine-Homogeneous Real Hypersurfaces of Tube Type in~$\mathbb{C}^{3}$
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 2
\pages 246--265
\mathnet{http://mi.mathnet.ru/mz9207}
\crossref{https://doi.org/10.4213/mzm9207}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3206086}
\zmath{https://zbmath.org/?q=an:06228547}
\elib{http://elibrary.ru/item.asp?id=20731774}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 2
\pages 238--254
\crossref{https://doi.org/10.1134/S0001434613070249}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000323665000024}
\elib{http://elibrary.ru/item.asp?id=20456229}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883419908}


Linking options:
  • http://mi.mathnet.ru/eng/mz9207
  • https://doi.org/10.4213/mzm9207
  • http://mi.mathnet.ru/eng/mz/v94/i2/p246

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Loboda, “O razmernostyakh grupp affinnykh preobrazovanii, tranzitivno deistvuyuschikh na veschestvennykh giperpoverkhnostyakh v $\Bbb C^3$”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2014, no. 4(23), 11–35  mathnet
    2. A. V. Atanov, A. V. Loboda, “Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space $\mathbb C^3$”, Math. Notes, 97:2 (2015), 295–299  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. A. V. Loboda, A. V. Shipovskaya, “On complete list of affinely homogeneous surfaces of ($\varepsilon,0$)-types in the space $\mathbb C^3$”, Russian Math. (Iz. VUZ), 59:6 (2015), 62–67  mathnet  crossref
    4. A. V. Loboda, A. V. Shipovskaya, “Ob affinno-odnorodnykh veschestvennykh giperpoverkhnostyakh obschego polozheniya v $\Bbb C^3$”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:3 (2017), 111–135  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:279
    Full text:97
    References:38
    First page:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020