RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 2, Pages 262–275 (Mi mz9232)  

This article is cited in 3 scientific papers (total in 3 papers)

Analytic Dynamics of a One-Dimensional System of Particles with Strong Interaction

V. A. Malyshev

M. V. Lomonosov Moscow State University

Abstract: We consider the dynamics of a system of $N$ particles on the circle with interaction of nearest neighbors, a Coulomb potential, and an analytic external force. The trajectories are real analytic functions of time. However, the series for them converge only for sufficiently small times. For zero initial velocities and a uniform initial location of particles, we prove $N$-dependent estimates on the coefficients of this series.

Keywords: system of particles with strong interaction, Coulomb potential, electric current, analytic external force

DOI: https://doi.org/10.4213/mzm9232

Full text: PDF file (491 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:2, 237–248

Bibliographic databases:

UDC: 519.938
Received: 15.07.2011
Revised: 08.12.2011

Citation: V. A. Malyshev, “Analytic Dynamics of a One-Dimensional System of Particles with Strong Interaction”, Mat. Zametki, 92:2 (2012), 262–275; Math. Notes, 92:2 (2012), 237–248

Citation in format AMSBIB
\Bibitem{Mal12}
\by V.~A.~Malyshev
\paper Analytic Dynamics of a One-Dimensional System of Particles with Strong Interaction
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 2
\pages 262--275
\mathnet{http://mi.mathnet.ru/mz9232}
\crossref{https://doi.org/10.4213/mzm9232}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201560}
\zmath{https://zbmath.org/?q=an:1266.82041}
\elib{http://elibrary.ru/item.asp?id=20731586}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 2
\pages 237--248
\crossref{https://doi.org/10.1134/S0001434612070255}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000308042500025}
\elib{http://elibrary.ru/item.asp?id=20473522}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865734973}


Linking options:
  • http://mi.mathnet.ru/eng/mz9232
  • https://doi.org/10.4213/mzm9232
  • http://mi.mathnet.ru/eng/mz/v92/i2/p262

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Malyshev V.A., “Self-Organized Circular Flow of Classical Point Particles”, J. Math. Phys., 54:2 (2013), 023301  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. Malyshev V.A., Zamyatin A.A., “One-Dimensional Coulomb Multiparticle Systems”, Adv. Math. Phys., 2015, 857846  crossref  mathscinet  zmath  isi  elib  scopus
    3. [Anonymous], “Coulomb Networks”, Markov Process. Relat. Fields, 24:2, SI (2018), 185–189  mathscinet  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:292
    Full text:60
    References:32
    First page:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019