Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 1, Pages 149–152 (Mi mz9248)  

This article is cited in 6 scientific papers (total in 6 papers)

Brief Communications

A Necessary Condition for the Convergence of Simple Partial Fractions in $L_p(\mathbb R)$

I. R. Kayumov

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan Federal University

Keywords: simple partial fraction, the space $L_p(\mathbb R)$, Hilbert transform

DOI: https://doi.org/10.4213/mzm9248

Full text: PDF file (285 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:1, 140–143

Bibliographic databases:

Received: 12.08.2011

Citation: I. R. Kayumov, “A Necessary Condition for the Convergence of Simple Partial Fractions in $L_p(\mathbb R)$”, Mat. Zametki, 92:1 (2012), 149–152; Math. Notes, 92:1 (2012), 140–143

Citation in format AMSBIB
\Bibitem{Kay12}
\by I.~R.~Kayumov
\paper A Necessary Condition for the Convergence of Simple Partial Fractions in~$L_p(\mathbb R)$
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 1
\pages 149--152
\mathnet{http://mi.mathnet.ru/mz9248}
\crossref{https://doi.org/10.4213/mzm9248}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201551}
\zmath{https://zbmath.org/?q=an:06138371}
\elib{https://elibrary.ru/item.asp?id=20731577}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 1
\pages 140--143
\crossref{https://doi.org/10.1134/S0001434612070164}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000308042500016}
\elib{https://elibrary.ru/item.asp?id=20476636}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865767970}


Linking options:
  • http://mi.mathnet.ru/eng/mz9248
  • https://doi.org/10.4213/mzm9248
  • http://mi.mathnet.ru/eng/mz/v92/i1/p149

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Kayumova, “Skhodimost ryadov prostykh drobei v $L_p(\mathbb R)$”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 1, Izd-vo Kazanskogo un-ta, Kazan, 2012, 208–213  mathnet
    2. I. R. Kayumov, A. V. Kayumova, “Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$”, J. Math. Sci. (N. Y.), 202:4 (2014), 553–559  mathnet  crossref
    3. V. I. Danchenko, A. E. Dodonov, “Estimates for $L_p$-norms of simple partial fractions”, Russian Math. (Iz. VUZ), 58:6 (2014), 6–15  mathnet  crossref
    4. V. I. Danchenko, L. A. Semin, “Sharp quadrature formulas and inequalities between various metrics for rational functions”, Siberian Math. J., 57:2 (2016), 218–229  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Chunaev P. Danchenko V., “Quadrature Formulas With Variable Nodes and Jackson-Nikolskii Inequalities For Rational Functions”, J. Approx. Theory, 228 (2018), 1–20  crossref  mathscinet  zmath  isi
    6. V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41  mathnet  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:566
    Full text:149
    References:45
    First page:42

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021