RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 94, Issue 5, Pages 648–660 (Mi mz9274)  

This article is cited in 1 scientific paper (total in 1 paper)

A Criterion for the Integral Equivalence of Two Generalized Convex Integer Polyhedra

A. V. Bykovskaya

M. V. Lomonosov Moscow State University

Abstract: We introduce the notion of integral equivalence and formulate a criterion for the equivalence of two polyhedra having certain special properties. The category of polyhedra under consideration includes Klein polyhedra, which are the convex hulls of nonzero points of the lattice $\mathbb Z^3$ that belong to some $3$-dimensional simplicial cone with vertex at the origin, and therefore the criterion enables one to improve some results related to Klein polyhedra. In particular, we suggest a simplified formulation of a geometric analog of Lagrange's theorem on continued fractions in the three-dimensional case.

Keywords: integral equivalence of polyhedra, generalized convex polyhedron, Klein polyhedron, three-dimensional continued fraction.

DOI: https://doi.org/10.4213/mzm9274

Full text: PDF file (536 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 94:5, 609–618

Bibliographic databases:

UDC: 511.4
Received: 25.10.2011
Revised: 23.11.2012

Citation: A. V. Bykovskaya, “A Criterion for the Integral Equivalence of Two Generalized Convex Integer Polyhedra”, Mat. Zametki, 94:5 (2013), 648–660; Math. Notes, 94:5 (2013), 609–618

Citation in format AMSBIB
\Bibitem{Byk13}
\by A.~V.~Bykovskaya
\paper A Criterion for the Integral Equivalence of Two Generalized Convex Integer Polyhedra
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 5
\pages 648--660
\mathnet{http://mi.mathnet.ru/mz9274}
\crossref{https://doi.org/10.4213/mzm9274}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3227007}
\zmath{https://zbmath.org/?q=an:06274239}
\elib{http://elibrary.ru/item.asp?id=20731811}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 5
\pages 609--618
\crossref{https://doi.org/10.1134/S0001434613110023}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000329130000002}
\elib{http://elibrary.ru/item.asp?id=21904261}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891289412}


Linking options:
  • http://mi.mathnet.ru/eng/mz9274
  • https://doi.org/10.4213/mzm9274
  • http://mi.mathnet.ru/eng/mz/v94/i5/p648

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:183
    Full text:38
    References:27
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019