RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 94, Issue 6, Pages 908–917 (Mi mz9306)  

This article is cited in 1 scientific paper (total in 1 paper)

Best Polynomial Approximations and the Widths of Function Classes in $L_{2}$

M. Sh. Shabozova, K. Tukhliev

a Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe

Abstract: Sharp Jackson–Stechkin type inequalities in which the modulus of continuity of $m$th order of functions is defined via the Steklov function are obtained. For the classes of functions defined by these moduli of continuity, exact values of various $n$-widths are derived.

Keywords: best polynomial approximation, Jackson–Stechkin type inequality, function classes in $L_{2}$.

DOI: https://doi.org/10.4213/mzm9306

Full text: PDF file (472 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 94:6, 930–937

Bibliographic databases:

UDC: 517.5
Received: 21.11.2011
Revised: 06.12.2012

Citation: M. Sh. Shabozov, K. Tukhliev, “Best Polynomial Approximations and the Widths of Function Classes in $L_{2}$”, Mat. Zametki, 94:6 (2013), 908–917; Math. Notes, 94:6 (2013), 930–937

Citation in format AMSBIB
\Bibitem{ShaTuk13}
\by M.~Sh.~Shabozov, K.~Tukhliev
\paper Best Polynomial Approximations and the Widths of Function Classes in~$L_{2}$
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 6
\pages 908--917
\mathnet{http://mi.mathnet.ru/mz9306}
\crossref{https://doi.org/10.4213/mzm9306}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3227034}
\zmath{https://zbmath.org/?q=an:1285.41017}
\elib{http://elibrary.ru/item.asp?id=21276948}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 6
\pages 930--937
\crossref{https://doi.org/10.1134/S0001434613110291}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000329130000029}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891295470}


Linking options:
  • http://mi.mathnet.ru/eng/mz9306
  • https://doi.org/10.4213/mzm9306
  • http://mi.mathnet.ru/eng/mz/v94/i6/p908

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. Tukhliev, “O priblizhenii periodicheskikh funktsii v $L_2$ i znacheniyakh poperechnikov nekotorykh klassov funktsii”, Model. i analiz inform. sistem, 22:1 (2015), 127–143  mathnet  mathscinet  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:235
    Full text:49
    References:39
    First page:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019