|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Об асимптотически сжимающих отображениях
А. А. Корнев, А. М. Степин Московский государственный университет им. М. В. Ломоносова
Аннотация:
Построено конструктивное обобщение принципа сжимающих отображений на случай отображений с произвольной скоростью сжатия.
Библиография: 12 названий.
DOI:
https://doi.org/10.4213/mzm9332
Полный текст:
PDF файл (421 kB)
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Mathematical Notes, 2013, 94:2, 214–219
Реферативные базы данных:
Тип публикации:
Статья
УДК:
517.9 Поступило: 27.12.2011
Образец цитирования:
А. А. Корнев, А. М. Степин, “Об асимптотически сжимающих отображениях”, Матем. заметки, 94:2 (2013), 218–224; Math. Notes, 94:2 (2013), 214–219
Цитирование в формате AMSBIB
\RBibitem{KorSte13}
\by А.~А.~Корнев, А.~М.~Степин
\paper Об асимптотически сжимающих отображениях
\jour Матем. заметки
\yr 2013
\vol 94
\issue 2
\pages 218--224
\mathnet{http://mi.mathnet.ru/mz9332}
\crossref{https://doi.org/10.4213/mzm9332}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3206083}
\zmath{https://zbmath.org/?q=an:06228544}
\elib{https://elibrary.ru/item.asp?id=20731771}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 2
\pages 214--219
\crossref{https://doi.org/10.1134/S0001434613070213}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000323665000021}
\elib{https://elibrary.ru/item.asp?id=20455737}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883355544}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/mz9332https://doi.org/10.4213/mzm9332 http://mi.mathnet.ru/rus/mz/v94/i2/p218
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
A. A. Kornev, “Data assimilation problems and stabilization with respect to unstable manifolds”, Russ. J. Numer. Anal. Math. Model., 29:1 (2014), 47–55
|
Просмотров: |
Эта страница: | 374 | Полный текст: | 118 | Литература: | 44 | Первая стр.: | 43 |
|