RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 94, Issue 2, Pages 314–316 (Mi mz9339)  

This article is cited in 13 scientific papers (total in 13 papers)

Brief Communications

On Commutative Subalgebras of the Weyl Algebra Related to Commuting Operators of Arbitrary Rank and Genus

O. I. Mokhov

M. V. Lomonosov Moscow State University

Keywords: commutative algebra, Weyl algebra, commuting operators.

DOI: https://doi.org/10.4213/mzm9339

Full text: PDF file (301 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 94:2, 298–300

Bibliographic databases:

Document Type: Article
Received: 31.01.2012

Citation: O. I. Mokhov, “On Commutative Subalgebras of the Weyl Algebra Related to Commuting Operators of Arbitrary Rank and Genus”, Mat. Zametki, 94:2 (2013), 314–316; Math. Notes, 94:2 (2013), 298–300

Citation in format AMSBIB
\Bibitem{Mok13}
\by O.~I.~Mokhov
\paper On Commutative Subalgebras of the Weyl Algebra Related to Commuting Operators of Arbitrary Rank and Genus
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 2
\pages 314--316
\mathnet{http://mi.mathnet.ru/mz9339}
\crossref{https://doi.org/10.4213/mzm9339}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3206095}
\zmath{https://zbmath.org/?q=an:06228552}
\elib{http://elibrary.ru/item.asp?id=20731779}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 2
\pages 298--300
\crossref{https://doi.org/10.1134/S0001434613070298}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000323665000029}
\elib{http://elibrary.ru/item.asp?id=20456076}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883402268}


Linking options:
  • http://mi.mathnet.ru/eng/mz9339
  • https://doi.org/10.4213/mzm9339
  • http://mi.mathnet.ru/eng/mz/v94/i2/p314

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. S. Oganesyan, “Commuting differential operators of rank 2 and arbitrary genus $g$ with polynomial coefficients”, Russian Math. Surveys, 70:1 (2015), 165–167  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. V. N. Davletshina, “Self-Adjoint Commuting Differential Operators of Rank 2 and Their Deformations Given by Soliton Equations”, Math. Notes, 97:3 (2015), 333–340  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. V. N. Davletshina, “Commuting differential operators of rank $2$ with trigonometric coefficients”, Siberian Math. J., 56:3 (2015), 405–410  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. V. S. Oganesyan, “Common Eigenfunctions of Commuting Differential Operators of Rank $2$”, Math. Notes, 99:2 (2016), 308–311  mathnet  crossref  crossref  mathscinet  isi  elib
    5. V. S. Oganesyan, “Commuting Differential Operators of Rank 2 with Polynomial Coefficients”, Funct. Anal. Appl., 50:1 (2016), 54–61  mathnet  crossref  crossref  mathscinet  isi  elib
    6. V. S. Oganesyan, “On operators of the form $\partial_x^4+u(x)$ from a pair of commuting differential operators of rank 2 and genus $g$”, Russian Math. Surveys, 71:3 (2016), 591–593  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. A. B. Zheglov, A. E. Mironov, B. T. Saparbayeva, “Commuting Krichever–Novikov differential operators with polynomial coefficients”, Siberian Math. J., 57:5 (2016), 819–823  mathnet  crossref  crossref  isi  elib  elib
    9. A. E. Mironov, A. B. Zheglov, “Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra”, Int. Math. Res. Notices, 2016, no. 10, 2974–2993  crossref  mathscinet  isi  elib  scopus
    10. V. Oganesyan, “Explicit characterization of some commuting differential operators of rank $2$”, Int. Math. Res. Notices, 2017, no. 6, 1623–1640  crossref  mathscinet  isi  scopus
    11. V. S. Oganesyan, “Commuting Differential Operators of Rank 2 with Rational Coefficients”, Funct. Anal. Appl., 52:3 (2018), 203–213  mathnet  crossref  crossref  isi  elib
    12. V. S. Oganesyan, “Alternative proof of Mironov's results on commuting self-adjoint operators of rank 2”, Siberian Math. J., 59:1 (2018), 102–106  mathnet  crossref  crossref  isi  elib
    13. V. S. Oganesyan, “The AKNS hierarchy and finite-gap Schrödinger potentials”, Theoret. and Math. Phys., 196:1 (2018), 983–995  mathnet  crossref  crossref  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:298
    Full text:50
    References:21
    First page:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019