RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 94, Issue 2, Pages 183–189 (Mi mz9346)  

On the Homeomorphism of Continuous Mappings

E. N. Belyanova, I. V. Bludova

N. E. Bauman Moscow State Technical University

Abstract: Denote by $\mathcal{C}(X)$ the partially ordered (PO) set of all continuous epimorphisms of a space $X$ under the natural identification of homeomorphic epimorphisms. The following homeomorphism theorem for bicompacta is implicitly contained in Magill's 1968 paper: two bicompacta $X$ and $Y$ are homeomorphic if and only if the PO sets $\mathcal{C}(X)$ and $\mathcal{C}(Y)$ are isomorphic.
In the present paper, Magill's theorem is extended to the category of mappings in which the role of bicompacta is played by perfect mappings. The results are obtained in two versions, namely, in the category $\mathit{TOP}_Z$ (of triangular commutative diagrams) and in the category $\mathit{MAP}$ (of quadrangular commutative diagrams).

Keywords: partially ordered set, continuous epimorphism, bicompactum, homeomorphism, commutative diagram, perfect mapping.

DOI: https://doi.org/10.4213/mzm9346

Full text: PDF file (432 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 94:2, 185–190

Bibliographic databases:

UDC: 512.533
Received: 16.01.2012

Citation: E. N. Belyanova, I. V. Bludova, “On the Homeomorphism of Continuous Mappings”, Mat. Zametki, 94:2 (2013), 183–189; Math. Notes, 94:2 (2013), 185–190

Citation in format AMSBIB
\Bibitem{BelBlu13}
\by E.~N.~Belyanova, I.~V.~Bludova
\paper On the Homeomorphism of Continuous Mappings
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 2
\pages 183--189
\mathnet{http://mi.mathnet.ru/mz9346}
\crossref{https://doi.org/10.4213/mzm9346}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3206080}
\zmath{https://zbmath.org/?q=an:06228541}
\elib{http://elibrary.ru/item.asp?id=20731768}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 2
\pages 185--190
\crossref{https://doi.org/10.1134/S0001434613070183}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000323665000018}
\elib{http://elibrary.ru/item.asp?id=20455987}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883381422}


Linking options:
  • http://mi.mathnet.ru/eng/mz9346
  • https://doi.org/10.4213/mzm9346
  • http://mi.mathnet.ru/eng/mz/v94/i2/p183

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:219
    Full text:80
    References:27
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020