Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 91, Issue 5, Pages 674–690 (Mi mz9357)  

This article is cited in 8 scientific papers (total in 8 papers)

On the Growth of Entire Functions with Discretely Measurable Zeros

G. G. Braicheva, V. B. Sherstyukovb

a Moscow State Pedagogical University
b National Engineering Physics Institute "MEPhI", Moscow

Abstract: We solve the problem of the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros in a special class specified by certain conditions on the upper and lower averaged $\rho$-density of zeros.

Keywords: entire function, least type of entire functions, upper (lower) density of zeros of entire functions, averaged upper density of zeros, discretely measurable sequence

DOI: https://doi.org/10.4213/mzm9357

Full text: PDF file (542 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 91:5, 630–644

Bibliographic databases:

UDC: 517.547.22
Received: 07.04.2011

Citation: G. G. Braichev, V. B. Sherstyukov, “On the Growth of Entire Functions with Discretely Measurable Zeros”, Mat. Zametki, 91:5 (2012), 674–690; Math. Notes, 91:5 (2012), 630–644

Citation in format AMSBIB
\Bibitem{BraShe12}
\by G.~G.~Braichev, V.~B.~Sherstyukov
\paper On the Growth of Entire Functions with Discretely Measurable Zeros
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 5
\pages 674--690
\mathnet{http://mi.mathnet.ru/mz9357}
\crossref{https://doi.org/10.4213/mzm9357}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201500}
\elib{https://elibrary.ru/item.asp?id=20731530}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 5
\pages 630--644
\crossref{https://doi.org/10.1134/S0001434612050045}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000305984400004}
\elib{https://elibrary.ru/item.asp?id=24952942}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864275069}


Linking options:
  • http://mi.mathnet.ru/eng/mz9357
  • https://doi.org/10.4213/mzm9357
  • http://mi.mathnet.ru/eng/mz/v91/i5/p674

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. G. Braichev, “Tochnye otsenki tipov tseloi funktsii poryadka $\rho\in(0;1)$ s nulyami na luche”, Ufimsk. matem. zhurn., 4:1 (2012), 29–37  mathnet
    2. G. G. Braichev, “The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities”, Sb. Math., 203:7 (2012), 950–975  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Braichev G.G., “Sharp bounds for the type of an entire function of order less than 1 whose zeros are located on a ray and have given averaged densities”, Dokl. Math., 86:1 (2012), 559–561  crossref  mathscinet  zmath  isi  elib  elib  scopus
    4. G. G. Braichev, “Exact relationships between certain characteristics of growth for complex sequences”, Ufa Math. J., 5:4 (2013), 16–29  mathnet  crossref  elib
    5. O. V. Sherstyukova, “O naimenshem tipe tselykh funktsii poryadka $\rho\in(0,1)$ s nulyami na luche”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:4 (2015), 433–441  mathnet  crossref  elib
    6. G. G. Braichev, “The exact bounds of lower type magnitude for entire function of order $\rho\in(0,1)$ with zeros of prescribed average densities”, Ufa Math. J., 7:4 (2015), 32–57  mathnet  crossref  isi  elib
    7. G. G. Braichev, “The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a sector”, Sb. Math., 207:2 (2016), 191–225  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. G. G. Braichev, V. B. Sherstyukov, “Tochnye otsenki asimptoticheskikh kharakteristik rosta tselykh funktsii s nulyami na zadannykh mnozhestvakh”, Fundament. i prikl. matem., 22:1 (2018), 51–97  mathnet
  • Математические заметки Mathematical Notes
    Number of views:
    This page:483
    Full text:115
    References:42
    First page:32

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022