RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2014, Volume 95, Issue 6, Pages 926–936 (Mi mz9369)  

This article is cited in 1 scientific paper (total in 1 paper)

Betti and Tachibana Numbers

S. E. Stepanov

Financial University under the Government of the Russian Federation, Moscow

Abstract: The Tachibana numbers $t_r(M)$, the Killing numbers $k_r(M)$, and the planarity numbers $p_r(M)$ are considered as the dimensions of the vector spaces of, respectively, all, coclosed, and closed conformal Killing $r$-forms with $1\le r\le n-1$ “globally” defined on a compact Riemannian $n$-manifold $(M,g)$, $n\ge 2$. Their relationship with the Betti numbers $b_r(M)$ is investigated. In particular, it is proved that if $b_r(M)=0$, then the corresponding Tachibana number has the form $t_r(M)=k_r(M)+p_r(M)$ for $t_r(M)>k_r(M)>0$. In the special case where $b_1(M)=0$ and $t_1(M)>k_1(M)>0$, the manifold $(M,g)$ is conformally diffeomorphic to the Euclidean sphere.

Keywords: compact manifold, Tachibana number, Killing number, planarity number, Betti number, conformal Killing form, conformal Killing (co)closed form.

DOI: https://doi.org/10.4213/mzm9369

Full text: PDF file (519 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2014, 95:6, 856–864

Bibliographic databases:

UDC: 514.764.2
Received: 04.05.2012
Revised: 11.03.2013

Citation: S. E. Stepanov, “Betti and Tachibana Numbers”, Mat. Zametki, 95:6 (2014), 926–936; Math. Notes, 95:6 (2014), 856–864

Citation in format AMSBIB
\Bibitem{Ste14}
\by S.~E.~Stepanov
\paper Betti and Tachibana Numbers
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 6
\pages 926--936
\mathnet{http://mi.mathnet.ru/mz9369}
\crossref{https://doi.org/10.4213/mzm9369}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3306229}
\elib{http://elibrary.ru/item.asp?id=21826516}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 6
\pages 856--864
\crossref{https://doi.org/10.1134/S0001434614050307}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000338338200030}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903397315}


Linking options:
  • http://mi.mathnet.ru/eng/mz9369
  • https://doi.org/10.4213/mzm9369
  • http://mi.mathnet.ru/eng/mz/v95/i6/p926

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Stepanov S.E. Tsyganok I.I. Mikes J., “Overview and Comparative Analysis of the Properties of the Hodge-de Rham and Tachibana Operators”, Filomat, 29:10 (2015), 2429–2436  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:333
    Full text:74
    References:45
    First page:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020