Matematicheskie Zametki General information Latest issue Forthcoming papers Archive Impact factor Subscription Guidelines for authors License agreement Submit a manuscript Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Mat. Zametki: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Mat. Zametki, 2012, Volume 92, Issue 1, Pages 3–18 (Mi mz9483) On a Method for Proving Exact Bounds on Derivational Complexity in Thue Systems

Steklov Mathematical Institute of the Russian Academy of Sciences

Abstract: In this paper, the following system of substitutions in a $3$-letter alphabet
$$\mathbf\Sigma=\langle a,b,c\mid a^2 \to bc, b^2\to ac, c^2\to ab\rangle$$
is considered. A detailed proof of results that were described briefly in the author's paper  is presented. They give an answer to the specific question on the possibility of giving a polynomial upper bound for the lengths of derivations from a given word in the system $\mathbf\Sigma$ stated in the literature. The maximal possible number of steps in derivation sequences starting from a given word $W$ is denoted by $\mathbf D(W)$. The maximum of $\mathbf D(W)$ for all words of length $|W|=l$ is denoted by $\mathbf D(l)$. It is proved that the function $\mathbf D(W)$ on words $W$ of given length $|W|=m+2$ reaches its maximum only on words of the form $W=c^2b^m$ and $W=b^ma^2$. For these words, the following precise estimate is established:
$$\mathbf D(m+2)=\mathbf D(c^2b^m)=\mathbf D(b^ma^2) =\rceil\frac{3m^2}{2}\lceil+m+1<\frac{3(m+1)^2}{2},$$
where $\lceil{3m^2}/{2}\rceil$ for odd $|m|$ is the round-up of ${3m^2}/{2}$ to the nearest integer.

Keywords: word rewriting system, derivational complexity, Thue system, polynomial upper bound, left (right) divisibility of a word

 Funding Agency Grant Number Russian Foundation for Basic Research Ministry of Education and Science of the Russian Federation DOI: https://doi.org/10.4213/mzm9483  Full text: PDF file (551 kB) References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:1, 3–15 Bibliographic databases:      UDC: 510.52+512.54.05

Citation: S. I. Adian, “On a Method for Proving Exact Bounds on Derivational Complexity in Thue Systems”, Mat. Zametki, 92:1 (2012), 3–18; Math. Notes, 92:1 (2012), 3–15 Citation in format AMSBIB
\paper On a Method for Proving Exact Bounds on Derivational Complexity in Thue Systems
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/mz9483}
\crossref{https://doi.org/10.4213/mzm9483}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201536}
\zmath{https://zbmath.org/?q=an:06138356}
\elib{https://elibrary.ru/item.asp?id=20731563}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 1
\pages 3--15
\crossref{https://doi.org/10.1134/S0001434612070012}
\elib{https://elibrary.ru/item.asp?id=20473314}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865706169}

• http://mi.mathnet.ru/eng/mz9483
• https://doi.org/10.4213/mzm9483
• http://mi.mathnet.ru/eng/mz/v92/i1/p3

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. V. S. Atabekyan, L. D. Beklemishev, V. S. Guba, I. G. Lysenok, A. A. Razborov, A. L. Semenov, “Questions in algebra and mathematical logic. Scientific heritage of S. I. Adian”, Russian Math. Surveys, 76:1 (2021), 1–27      •  Number of views: This page: 732 Full text: 170 References: 43 First page: 21 Contact us: math-net2022_01 [at] mi-ras ru Terms of Use Registration to the website Logotypes © Steklov Mathematical Institute RAS, 2022