RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1970, Volume 7, Issue 3, Pages 349–358 (Mi mz9516)  

A ring of quotients

L. Sh. Ioffe

Moscow Engineering Institute of Railroad Transportation

Abstract: Let $\Sigma$ be a radical filter in a ring $R$, and let the ring $Q$ be defined by the equation $Q=\mathrm{Hom}_H(E, E)$, where $H=\mathrm{Hom}_R(E, E)$ and $E$ is the $\Sigma$-envelope of the ring. We show that the ring $Q$ possesses the properties of a ring of quotients and coincides with the ring of quotients in the sense of Gabriel and Bourbaki if the annihilator of any ideal $I\in\Sigma$ is equal to zero.

Full text: PDF file (1176 kB)

English version:
Mathematical Notes, 1970, 7:3, 209–214

Bibliographic databases:

UDC: 512.4
Received: 16.10.1968

Citation: L. Sh. Ioffe, “A ring of quotients”, Mat. Zametki, 7:3 (1970), 349–358; Math. Notes, 7:3 (1970), 209–214

Citation in format AMSBIB
\Bibitem{Iof70}
\by L.~Sh.~Ioffe
\paper A ring of quotients
\jour Mat. Zametki
\yr 1970
\vol 7
\issue 3
\pages 349--358
\mathnet{http://mi.mathnet.ru/mz9516}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=260802}
\zmath{https://zbmath.org/?q=an:0209.33701}
\transl
\jour Math. Notes
\yr 1970
\vol 7
\issue 3
\pages 209--214
\crossref{https://doi.org/10.1007/BF01093117}


Linking options:
  • http://mi.mathnet.ru/eng/mz9516
  • http://mi.mathnet.ru/eng/mz/v7/i3/p349

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:78
    Full text:38
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020