RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1970, Volume 8, Issue 1, Pages 77–83 (Mi mz9583)  

This article is cited in 4 scientific papers (total in 4 papers)

Exact functions on manifolds

O. I. Bogoyavlenskii

M. V. Lomonosov Moscow State University

Abstract: It is proved that the property of a manifold $M^n$ possessing a smooth function with given numbers of critical points of each index is homotopic invariant if $Wh(\pi_1(M^n))=0$ and every $Z(\pi_1(M^n))$-stable free module is free.

Full text: PDF file (642 kB)

English version:
Mathematical Notes, 1970, 8:1, 514–517

Bibliographic databases:

UDC: 513.83
Received: 22.05.1969

Citation: O. I. Bogoyavlenskii, “Exact functions on manifolds”, Mat. Zametki, 8:1 (1970), 77–83; Math. Notes, 8:1 (1970), 514–517

Citation in format AMSBIB
\Bibitem{Bog70}
\by O.~I.~Bogoyavlenskii
\paper Exact functions on manifolds
\jour Mat. Zametki
\yr 1970
\vol 8
\issue 1
\pages 77--83
\mathnet{http://mi.mathnet.ru/mz9583}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=273635}
\zmath{https://zbmath.org/?q=an:0218.57023}
\transl
\jour Math. Notes
\yr 1970
\vol 8
\issue 1
\pages 514--517
\crossref{https://doi.org/10.1007/BF01093444}


Linking options:
  • http://mi.mathnet.ru/eng/mz9583
  • http://mi.mathnet.ru/eng/mz/v8/i1/p77

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. A. V. Pajitnov, “On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group”, Math. USSR-Sb., 68:2 (1991), 351–389  mathnet  crossref  mathscinet  zmath  isi
    3. V. V. Sharko, “Stable algebra in Morse theory”, Math. USSR-Izv., 36:3 (1991), 629–653  mathnet  crossref  mathscinet  zmath  adsnasa
    4. V. V. Sharko, “Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds”, Proc. Steklov Inst. Math., 252 (2006), 248–263  mathnet  crossref  mathscinet
  • Математические заметки Mathematical Notes
    Number of views:
    This page:101
    Full text:50
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020