RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2015, Volume 97, Issue 2, Pages 163–173 (Mi mz9689)  

This article is cited in 1 scientific paper (total in 1 paper)

Ergodic Properties of a Transformation of a Self-Similar Space with a Hausdorff Measure

N. S. Arkashovab

a Novosibirsk State Technical University
b Novosibirsk State University

Abstract: On a space equipped with a Hausdorff measure and possessing the self-similarity property, we prove ergodicity and study the continuity of the transformation generated by the shift transformation on a sequence space.

Keywords: Hausdorff measure, self-similarity, ergodicity, fractal, chaos.

Funding Agency Grant Number
Russian Foundation for Basic Research 13-01-00661
Ministry of Education and Science of the Russian Federation 2.1.1(2013)
This work was supported in part by the Russian Foundation for Basic Research (grant no. 13-01-00661) and by Novosibirsk State Technical University (grant no. 2.1.1 (2013)).


DOI: https://doi.org/10.4213/mzm9689

Full text: PDF file (442 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2015, 97:2, 155–163

Bibliographic databases:

Document Type: Article
UDC: 517.54
Received: 16.05.2012
Revised: 03.04.2014

Citation: N. S. Arkashov, “Ergodic Properties of a Transformation of a Self-Similar Space with a Hausdorff Measure”, Mat. Zametki, 97:2 (2015), 163–173; Math. Notes, 97:2 (2015), 155–163

Citation in format AMSBIB
\Bibitem{Ark15}
\by N.~S.~Arkashov
\paper Ergodic Properties of a~Transformation of a~Self-Similar Space with a~Hausdorff Measure
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 2
\pages 163--173
\mathnet{http://mi.mathnet.ru/mz9689}
\crossref{https://doi.org/10.4213/mzm9689}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3370504}
\zmath{https://zbmath.org/?q=an:06459064}
\elib{http://elibrary.ru/item.asp?id=23421505}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 2
\pages 155--163
\crossref{https://doi.org/10.1134/S0001434615010186}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350557000018}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941660229}


Linking options:
  • http://mi.mathnet.ru/eng/mz9689
  • https://doi.org/10.4213/mzm9689
  • http://mi.mathnet.ru/eng/mz/v97/i2/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. S. Arkashov, V. A. Seleznev, “On the dynamics of stationary shift processes with Cantor structure”, Siberian Math. J., 58:5 (2017), 752–764  mathnet  crossref  crossref  isi  elib  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:276
    Full text:14
    References:36
    First page:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019