RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2017, Volume 102, Issue 1, Pages 52–63 (Mi mz9694)  

$\varphi$-Strong Approximation of Functions by Trigonometric Polynomials

R. A. Lasuriya

Abkhazian State University

Abstract: The rate of $\varphi$-strong approximation of periodic functions by trigonometric polynomials constructed on the basis of interpolating polynomials with equidistant nodes is considered.

Keywords: Fourier–Lagrange series, group of deviations, best approximation, Dirichlet kernel.

DOI: https://doi.org/10.4213/mzm9694

Full text: PDF file (474 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 102:1, 43–52

Bibliographic databases:

UDC: 517.5
Received: 02.11.2016

Citation: R. A. Lasuriya, “$\varphi$-Strong Approximation of Functions by Trigonometric Polynomials”, Mat. Zametki, 102:1 (2017), 52–63; Math. Notes, 102:1 (2017), 43–52

Citation in format AMSBIB
\Bibitem{Las17}
\by R.~A.~Lasuriya
\paper $\varphi$-Strong Approximation of Functions by Trigonometric Polynomials
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 1
\pages 52--63
\mathnet{http://mi.mathnet.ru/mz9694}
\crossref{https://doi.org/10.4213/mzm9694}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3670209}
\elib{http://elibrary.ru/item.asp?id=29437447}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 1
\pages 43--52
\crossref{https://doi.org/10.1134/S0001434617070057}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000413842800005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032389730}


Linking options:
  • http://mi.mathnet.ru/eng/mz9694
  • https://doi.org/10.4213/mzm9694
  • http://mi.mathnet.ru/eng/mz/v102/i1/p52

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:176
    Full text:4
    References:28
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020