RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1972, Volume 11, Issue 5, Pages 559–567 (Mi mz9823)  

On a transformation operator for a system of Sturm–Liouville equations

M. B. Velieva, M. G. Gasymovb

a Institute of Mathematics and Mechanics, Academy of Sciences of the Azerbaidzhan SSR
b S. M. Kirov Azerbaidzhan State University

Abstract: We prove the existence of a transformation operator with a condition at infinity that sends a solution of the matrix equation $-y"+My=\lambda^2y$ ($M$ is a constant Hermitian matrix) into a solution of the matrix equation $-y"+Q(x)y+My=\lambda^2y$ (the matrix function $Q(x)$ is continuously differentiable for $0\leqslant x<\infty$ and it is Hermitian for each $x$ belonging to $[0,\infty)$); we study some properties of the kernel of the transformation operator.

Full text: PDF file (783 kB)

English version:
Mathematical Notes, 1972, 11:5, 341–346

Bibliographic databases:

UDC: 517.9
Received: 03.06.1971

Citation: M. B. Veliev, M. G. Gasymov, “On a transformation operator for a system of Sturm–Liouville equations”, Mat. Zametki, 11:5 (1972), 559–567; Math. Notes, 11:5 (1972), 341–346

Citation in format AMSBIB
\Bibitem{VelGas72}
\by M.~B.~Veliev, M.~G.~Gasymov
\paper On a transformation operator for a system of Sturm--Liouville equations
\jour Mat. Zametki
\yr 1972
\vol 11
\issue 5
\pages 559--567
\mathnet{http://mi.mathnet.ru/mz9823}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=308508}
\zmath{https://zbmath.org/?q=an:0273.34013|0265.34030}
\transl
\jour Math. Notes
\yr 1972
\vol 11
\issue 5
\pages 341--346
\crossref{https://doi.org/10.1007/BF01158649}


Linking options:
  • http://mi.mathnet.ru/eng/mz9823
  • http://mi.mathnet.ru/eng/mz/v11/i5/p559

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:116
    Full text:78
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020