RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1972, Volume 11, Issue 6, Pages 661–668 (Mi mz9834)  

This article is cited in 1 scientific paper (total in 1 paper)

On an inverse problem for non-selfadjoint difference operators

Yu. L. Kishakevich

L'vov State University

Abstract: We recover the coefficients in certain difference expressions in terms of a known generalized spectral function of Marchenko type.

Full text: PDF file (765 kB)

English version:
Mathematical Notes, 1972, 11:6, 402–406

Bibliographic databases:

UDC: 513.88
Received: 16.03.1971

Citation: Yu. L. Kishakevich, “On an inverse problem for non-selfadjoint difference operators”, Mat. Zametki, 11:6 (1972), 661–668; Math. Notes, 11:6 (1972), 402–406

Citation in format AMSBIB
\Bibitem{Kis72}
\by Yu.~L.~Kishakevich
\paper On an inverse problem for non-selfadjoint difference operators
\jour Mat. Zametki
\yr 1972
\vol 11
\issue 6
\pages 661--668
\mathnet{http://mi.mathnet.ru/mz9834}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=308628}
\zmath{https://zbmath.org/?q=an:0254.47049}
\transl
\jour Math. Notes
\yr 1972
\vol 11
\issue 6
\pages 402--406
\crossref{https://doi.org/10.1007/BF01093726}


Linking options:
  • http://mi.mathnet.ru/eng/mz9834
  • http://mi.mathnet.ru/eng/mz/v11/i6/p661

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gusein Sh. Guseinov, “Inverse Spectral Problems for Tridiagonal $N$ by $N$ Complex Hamiltonians”, SIGMA, 5 (2009), 018, 28 pp.  mathnet  crossref  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:72
    Full text:39
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020