RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2000, Volume 68, Issue 5, Pages 699–709 (Mi mz991)  

This article is cited in 1 scientific paper (total in 1 paper)

General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations

K. V. Rerikh

Joint Institute for Nuclear Research

Abstract: A general approach is developed for integrating an invertible dynamical system defined by the composition of two involutions, i.e., a nonlinear one which is a standard Cremona transformation, and a linear one. By the Noether theorem, the integration of these systems is the foundation for integrating a broad class of Cremona dynamical systems. We obtain a functional equation for invariant homogeneous polynomials and sufficient conditions for the algebraic integrability of the systems under consideration. It is proved that Siegel's linearization theorem is applicable if the eigenvalues of the map at a fixed point are algebraic numbers.

DOI: https://doi.org/10.4213/mzm991

Full text: PDF file (244 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2000, 68:5, 594–601

Bibliographic databases:

UDC: 519
Received: 16.02.1994
Revised: 27.03.2000

Citation: K. V. Rerikh, “General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations”, Mat. Zametki, 68:5 (2000), 699–709; Math. Notes, 68:5 (2000), 594–601

Citation in format AMSBIB
\Bibitem{Rer00}
\by K.~V.~Rerikh
\paper General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 5
\pages 699--709
\mathnet{http://mi.mathnet.ru/mz991}
\crossref{https://doi.org/10.4213/mzm991}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1835452}
\zmath{https://zbmath.org/?q=an:1060.14508}
\elib{http://elibrary.ru/item.asp?id=13947548}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 5
\pages 594--601
\crossref{https://doi.org/10.1023/A:1026619524037}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000166684000007}


Linking options:
  • http://mi.mathnet.ru/eng/mz991
  • https://doi.org/10.4213/mzm991
  • http://mi.mathnet.ru/eng/mz/v68/i5/p699

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Celledoni E., McLachlan R.I., McLaren D.I., Owren B., Quispel G.R.W., “Discretization of Polynomial Vector Fields By Polarization”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 471:2184 (2015), 20150390  crossref  mathscinet  zmath  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:250
    Full text:84
    References:42
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020