Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1973, Volume 14, Issue 5, Pages 655–666 (Mi mz9950)  

This article is cited in 2 scientific papers (total in 2 papers)

Cantor–Lebesgue theorem for double trignometric series

V. S. Panferov

M. V. Lomonosov Moscow State University

Abstract: Let $||\cdot||$ be a norm in $\mathbf{R}^2$ and let $\Gamma$ be the unit sphere induced by this norm. We call a segment joining points $x, y\in\mathbf{R}^2$ rational if $(x_1-y_1)/(x_2-y_2)$ или $(x_2-y_2)/(x_1-y_1)$ is a rational number. Let $\Gamma$ be a convex curve containing no rational segments. Satisfaction of the condition
$$ T_\nu(x)=\sum_{||n||=\nu}c_n e^{2\pi i(n_1x_1+n_2x_2)}\to0\qquad (\nu\to\infty) $$
in measure on the set $E\subset[-\frac12, \frac12)\times[-\frac12, \frac12)=T^2$ of positive planar measure implies $||T_\nu||_{L_4}(T^2)\to0$ ($\nu\to\infty$). If, however, $\Gamma$ contains a rational segment, then there exist a sequence of polynomials $\{T_\nu\}$ and a set $E\subset T^2$, $|E|>0$, such that $T_\nu(x)\to0$ ($\nu\to\infty$) on $E$; however, $|c_n|\not\to0$ for $||n||\to\infty$.

Full text: PDF file (1169 kB)

English version:
Mathematical Notes, 1973, 14:5, 936–942

Bibliographic databases:

UDC: 517.5
Received: 17.05.1973

Citation: V. S. Panferov, “Cantor–Lebesgue theorem for double trignometric series”, Mat. Zametki, 14:5 (1973), 655–666; Math. Notes, 14:5 (1973), 936–942

Citation in format AMSBIB
\Bibitem{Pan73}
\by V.~S.~Panferov
\paper Cantor--Lebesgue theorem for double trignometric series
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 5
\pages 655--666
\mathnet{http://mi.mathnet.ru/mz9950}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=330917}
\zmath{https://zbmath.org/?q=an:0281.42016}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 5
\pages 936--942
\crossref{https://doi.org/10.1007/BF01462253}


Linking options:
  • http://mi.mathnet.ru/eng/mz9950
  • http://mi.mathnet.ru/eng/mz/v14/i5/p655

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. I. Golubov, “On convergence of Riesz spherical means of multiple Fourier series”, Math. USSR-Sb., 25:2 (1975), 177–197  mathnet  crossref  mathscinet  zmath
    2. M. I. Dyachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:127
    Full text:50
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021