Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1973, Volume 14, Issue 5, Pages 687–696 (Mi mz9953)  

This article is cited in 3 scientific papers (total in 3 papers)

Three-dimensional dynamic systems with noncoarse homoclinical contours

N. K. Gavrilov

Scientific-Research Institute of Applied Mathematics and Cybernetics, Gor'kii State University

Abstract: The paper deals with bifurcations of dynamic systems having noncoarse homoclinical contours. Cases are singled out when the bifurcation surface corresponding to the appearance of a noncoarse homoclinical contour can separate a Morse–Smiley system from a system with a countable set of periodic motions. An example is adduced of the existence of a countable set of stable periodic motions.

Full text: PDF file (1119 kB)

English version:
Mathematical Notes, 1973, 14:5, 953–957

Bibliographic databases:

UDC: 517.9
Received: 29.06.1973

Citation: N. K. Gavrilov, “Three-dimensional dynamic systems with noncoarse homoclinical contours”, Mat. Zametki, 14:5 (1973), 687–696; Math. Notes, 14:5 (1973), 953–957

Citation in format AMSBIB
\Bibitem{Gav73}
\by N.~K.~Gavrilov
\paper Three-dimensional dynamic systems with noncoarse homoclinical contours
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 5
\pages 687--696
\mathnet{http://mi.mathnet.ru/mz9953}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=339286}
\zmath{https://zbmath.org/?q=an:0351.58004}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 5
\pages 953--957
\crossref{https://doi.org/10.1007/BF01462256}


Linking options:
  • http://mi.mathnet.ru/eng/mz9953
  • http://mi.mathnet.ru/eng/mz/v14/i5/p687

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Gonchenko, “Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour”, Sb. Math., 187:9 (1996), 1261–1281  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Gorbikov S., Men'shenina A., “Bifurcation Resulting in Chaotic Motions in Dynamical Systems with Shock Interactions”, Differ. Equ., 41:8 (2005), 1097–1104  mathnet  crossref  isi
    3. S. V. Gonchenko, O. V. Stenkin, “Gomoklinicheskii $\Omega$-vzryv: intervaly giperbolichnosti i ikh granitsy”, Nelineinaya dinam., 7:1 (2011), 3–24  mathnet  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:92
    Full text:53
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021