Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1973, Volume 14, Issue 5, Pages 741–744 (Mi mz9959)  

This article is cited in 1 scientific paper (total in 1 paper)

An embedding theorem for polycyclic groups

V. A. Roman'kov

Institute of Mathematics, Siberian Branch, Academy of Sciences of the USSR

Abstract: It is shown that every polycyclic group embeds in a two-generated polycyclic group.

Full text: PDF file (384 kB)

English version:
Mathematical Notes, 1973, 14:5, 983–984

Bibliographic databases:

UDC: 519.4
Received: 17.05.1973

Citation: V. A. Roman'kov, “An embedding theorem for polycyclic groups”, Mat. Zametki, 14:5 (1973), 741–744; Math. Notes, 14:5 (1973), 983–984

Citation in format AMSBIB
\Bibitem{Rom73}
\by V.~A.~Roman'kov
\paper An embedding theorem for polycyclic groups
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 5
\pages 741--744
\mathnet{http://mi.mathnet.ru/mz9959}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=330298}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 5
\pages 983--984
\crossref{https://doi.org/10.1007/BF01462262}


Linking options:
  • http://mi.mathnet.ru/eng/mz9959
  • http://mi.mathnet.ru/eng/mz/v14/i5/p741

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Roman'kov, “Two problems for solvable and nilpotent groups”, Algebra and Logic, 59:6 (2021), 483–492  mathnet  crossref  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:131
    Full text:66
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021