Наносистемы: физика, химия, математика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Наносистемы: физика, химия, математика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Наносистемы: физика, химия, математика, 2021, том 12, выпуск 3, страницы 346–362 (Mi nano1031)  

CHEMISTRY AND MATERIAL SCIENCE

Catalytic fullerenol action on Chlorella growth in the conditions of limited resource base and in the conditions of oxidation stress

L. V. Gerasimovaa, N. A. Charykovab, K. N. Semenovac, V. A. Keskinova, A. V. Kurilenkoa, Zh. K. Shaimardanovd, B. K. Shaimardanovad, N. A. Kulenovad, D. G. Letenkoe, Ayat Kanbara

a Saint Petersburg State Technological Institute (Technical University), Moskovsky prospect, 26, Saint Petersburg, 190013, Russia
b Saint Petersburg Electrotechnical University "LETI", ul. Professora Popova 5, 197376,Saint Petersburg, Russia
c Saint Petersburg State University, 7/9 Universitetskaya emb., Saint Petersburg, 199034, Russia
d D. Serikbayev East Kazakhstan state technical university, A. K. Protozanov Street, 69,Ust Kamenogorsk city, 070004, The Republic of Kazakhstan
e Saint Petersburg State University of Architecture and Civil Engineering (SPSUACE), 2nd Krasnoarmeiskaya St. 4, 190005, Saint Petersburg, Russia

Аннотация: Catalytic fullerenol C$_{60}$(OH)$_{24}$ action on Chlorella Vulgaris growth in the conditions of limited resource growth base and in the conditions of oxidative stress are reported. Chlorella growth or oppression were investigated in open transparent in the visible area cylindrical polystyrene test tubes at room temperature under illumination by standard incandescent lamp for the period 9 days. Catalyst concentration were varied in the range 0.01 – 1.0 g/dm$^{3}$. Oxidative stress was organized by the addition of hydrogen peroxide with the concentration 1.0 g/dm$^{3}$. Chlorella Vulgaris concentrations were determined by the method of turbidimetry – by the determination of optical density of scattered light in the direction of propagation of the incident beam at wavelength 664 nm. Obtained kinetic data were processed by the method of formal classical kinetics. The pseudo-order of the process Chlorella Vulgaris growth in the conditions of limited resource, according to Chlorella, is -2; the curve of the dependence of Chlorella concentration against time is concave at all fullerenol concentrations. The pseudo-order of the process Chlorella Vulgaris suppression in the conditions of oxidative stress, according to Chlorella, is +2, the curve of the dependence of Chlorella concentration against time is convex at all fullerenol concentrations. The kinetics of Chlorella Vulgaris growth in the conditions of limited resource was also processed by model Verhulst equation of logisitic growth, and this equation describes the kinetics as accurately and adequately as possible. The authors have established, that in the case of the conditions of limited resource, fullerenol at low concentrations (less than 0.1 g/dm$^{3}$) catalyzes-accelerates Chlorella growth and at higher concentrations (0.1 – 1.0 g/dm$^{3}$) inhibits Chlorella growth. For the conditions of oxidative stress, authors have established, that at all fullerenol concentrations, it considerably inhibits suppression-depopulation of Chlorella processes, so fullerenol proves enough strong anti-oxidant action. It was demonstrated, that Verhulst equation maybe satisfactory used for the description of different natural process.

Ключевые слова: fullerenol, catalyst, inhibitor, hydrogen peroxide, Chlorella growth, suppression.

Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации 0785-2021-0002
Investigations were supported by the Ministry of Science and Higher Education of the Russian Federation (institution 785.00.X6019, mnemonic code of the application topic 0785-2021-0002).


DOI: https://doi.org/10.17586/2220-8054-2021-12-3-346-362

Полный текст: PDF файл (1997 kB)
Полный текст: http://nanojournal.ifmo.ru/.../paper11

Реферативные базы данных:

Тип публикации: Статья
Поступила в редакцию: 13.03.2021
Исправленный вариант: 17.05.2021
Язык публикации: английский

Образец цитирования: L. V. Gerasimova, N. A. Charykov, K. N. Semenov, V. A. Keskinov, A. V. Kurilenko, Zh. K. Shaimardanov, B. K. Shaimardanova, N. A. Kulenova, D. G. Letenko, Ayat Kanbar, “Catalytic fullerenol action on Chlorella growth in the conditions of limited resource base and in the conditions of oxidation stress”, Наносистемы: физика, химия, математика, 12:3 (2021), 346–362

Цитирование в формате AMSBIB
\RBibitem{GerChaSem21}
\by L.~V.~Gerasimova, N.~A.~Charykov, K.~N.~Semenov, V.~A.~Keskinov, A.~V.~Kurilenko, Zh.~K.~Shaimardanov, B.~K.~Shaimardanova, N.~A.~Kulenova, D.~G.~Letenko, Ayat~Kanbar
\paper Catalytic fullerenol action on Chlorella growth in the conditions of limited resource base and in the conditions of oxidation stress
\jour Наносистемы: физика, химия, математика
\yr 2021
\vol 12
\issue 3
\pages 346--362
\mathnet{http://mi.mathnet.ru/nano1031}
\crossref{https://doi.org/10.17586/2220-8054-2021-12-3-346-362}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000668639600011}
\elib{https://elibrary.ru/item.asp?id=46222718}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/nano1031
  • http://mi.mathnet.ru/rus/nano/v12/i3/p346

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Наносистемы: физика, химия, математика
    Просмотров:
    Эта страница:22
    Полный текст:9
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021