RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2005, Volume 1, Number 1, Pages 3–21 (Mi nd187)  

This article is cited in 2 scientific papers (total in 2 papers)

Interaction of two circular cylinders in a perfect fluid

A. V. Borisovab, I. S. Mamaevba, S. M. Ramodanov

a Institute of Computer Science
b Udmurt State University

Abstract: In this paper we consider the system of two 2D rigid circular cylinders immersed in an unbounded volume of inviscid perfect fluid. The circulations around the cylinders are assumed to be equal in magnitude and opposite in sign. Special cases of this system (the cylinders move along the line through their centers and the circulation around each cylinder is zero) are considered. A similar system of two interacting spheres was originally considered in classical works of Carl and Vilhelm Bjerknes, G. Lamb and N. E. Joukowski.
By making the radii of the cylinders infinitesimally small, we have obtained a new mechanical system which consists of two regular point vortices but with non-zero masses. The study of this system can be reduced to the study of the motion of a particle subject to potential and gyroscopic forces. A new integrable case is found. The Hamiltonian equations of motion for this system have been generalized to the case of an arbitrary number of mass vortices with arbitrary intensities. Some first integrals have been obtained. These equations expand upon the classical Kirchhoff equations of motion for n point vortices.

Keywords: perfect fluid, circulation, rigid body, qualitative analysis.

Full text: PDF file (401 kB)

Document Type: Article
UDC: 531.3

Citation: A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Interaction of two circular cylinders in a perfect fluid”, Nelin. Dinam., 1:1 (2005), 3–21

Citation in format AMSBIB
\Bibitem{BorMamRam05}
\by A.~V.~Borisov, I.~S.~Mamaev, S.~M.~Ramodanov
\paper Interaction of two circular cylinders in a~perfect fluid
\jour Nelin. Dinam.
\yr 2005
\vol 1
\issue 1
\pages 3--21
\mathnet{http://mi.mathnet.ru/nd187}


Linking options:
  • http://mi.mathnet.ru/eng/nd187
  • http://mi.mathnet.ru/eng/nd/v1/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Vladimirov, A. B. Morgulis, “Relative equilibria in the Bjerknes problem”, Siberian Math. J., 55:1 (2014), 35–48  mathnet  crossref  mathscinet  isi
    2. A. B. Morgulis, “Hydrodynamic Characterization of the Ball”, Math. Notes, 96:5 (2014), 739–744  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  • Нелинейная динамика
    Number of views:
    This page:138
    Full text:55
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018