|
Separation of variables on non-hiperelliptic curve
V. G. Marikhin, V. V. Sokolov L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Abstract:
A 8-parametric pair of commuting Hamiltonians of two degrees of freedom, quadratic in moments and coefficients depending only on coordinates is constructed. The Schottky-Manakov and the Clebsch spinning tops are particular cases of this model. The action function as an integral on a non-hyperelliptic curve of genus 4 is found.
Keywords:
Action function, separation of variables, covering of an elliptic curve.
Full text:
PDF file (212 kB)
UDC:
531.3
Citation:
V. G. Marikhin, V. V. Sokolov, “Separation of variables on non-hiperelliptic curve”, Nelin. Dinam., 1:1 (2005), 53–67
Citation in format AMSBIB
\Bibitem{MarSok05}
\by V.~G.~Marikhin, V.~V.~Sokolov
\paper Separation of variables on non-hiperelliptic curve
\jour Nelin. Dinam.
\yr 2005
\vol 1
\issue 1
\pages 53--67
\mathnet{http://mi.mathnet.ru/nd190}
Linking options:
http://mi.mathnet.ru/eng/nd190 http://mi.mathnet.ru/eng/nd/v1/i1/p53
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 164 | Full text: | 79 | First page: | 1 |
|