RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2005, Volume 1, Number 1, Pages 143–154 (Mi nd194)  

A note by Poincaré

A. Chenciner

ASD, IMCCE (UMR 8028 du CNRS), Observatoire de Paris, Departement de Mathématiques, Université D. Diderot

Abstract: On November 30th 1896, Poincaré published a note entitled “On the periodic solutions and the least action principle” in the “Comptes rendus de l'Académie des Sciences”. He proposed to find periodic solutions of the planar Three-Body Problem by minimizing the Lagrangian action among loops in the configuration space which satisfy given constraints (the constraints amount to fixing their homology class). For the Newtonian potential, proportional to the inverse of the distance, the “collision problem” prevented him from realizing his program; hence he replaced it by a “strong force potential” proportional to the inverse of the squared distance.
In the lecture, the nature of the difficulties met by Poincaré is explained and it is shown how, one century later, these have been partially resolved for the Newtonian potential, leading to the discovery of new remarkable families of periodic solutions of the planar or spatial $n$-body problem.

Keywords: Poincaré, three-body problem, action minimizing periodic solutions.

Full text: PDF file (314 kB)
UDC: 531

Citation: A. Chenciner, “A note by Poincaré”, Nelin. Dinam., 1:1 (2005), 143–154

Citation in format AMSBIB
\Bibitem{Che05}
\by A.~Chenciner
\paper A note by Poincar{\'e}
\jour Nelin. Dinam.
\yr 2005
\vol 1
\issue 1
\pages 143--154
\mathnet{http://mi.mathnet.ru/nd194}


Linking options:
  • http://mi.mathnet.ru/eng/nd194
  • http://mi.mathnet.ru/eng/nd/v1/i1/p143

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Нелинейная динамика
    Number of views:
    This page:174
    Full text:69
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020