RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2005, Volume 1, Number 2, Pages 191–207 (Mi nd198)  

Chaos in a restricted problem of rotation of a rigid body with a fixed point

A. V. Borisovab, A. A. Kilinba, I. S. Mamaevba

a Udmurt State University
b Institute of Computer Science

Abstract: The paper deals with a transition to chaos in the phase-plane portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotisation have been indicated: 1) growth of the homoclinic structure and 2) development of cascades of period doubling bifurcations. On the zero level of the integral of areas, an adiabatic behavior of the system (as the energy tends to zero) has been noticed. Meander tori induced by the breakdown of the torsion property of the mapping have been found.

Keywords: motion of a rigid body, phase-plane portrait, mechanism of chaotisation, bifurcations.

Full text: PDF file (703 kB)

Document Type: Article
UDC: 531.38

Citation: A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Chaos in a restricted problem of rotation of a rigid body with a fixed point”, Nelin. Dinam., 1:2 (2005), 191–207

Citation in format AMSBIB
\Bibitem{BorKilMam05}
\by A.~V.~Borisov, A.~A.~Kilin, I.~S.~Mamaev
\paper Chaos in a restricted problem of rotation of a rigid body with a fixed point
\jour Nelin. Dinam.
\yr 2005
\vol 1
\issue 2
\pages 191--207
\mathnet{http://mi.mathnet.ru/nd198}


Linking options:
  • http://mi.mathnet.ru/eng/nd198
  • http://mi.mathnet.ru/eng/nd/v1/i2/p191

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Нелинейная динамика
    Number of views:
    This page:100
    Full text:39
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019