RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2010, Volume 6, Number 3, Pages 521–530 (Mi nd22)  

Dynamic advection

A. V. Borisovab, I. S. Mamaevab, S. M. Ramodanovab

a Udmurt State University
b Institute of Computer Science

Abstract: A new concept of dynamic advection is introduced. The model of dynamic advection deals with the motion of massive particles in a 2D flow of an ideal incompressible liquid. Unlike the standard advection problem, which is widely treated in the modern literature, our equations of motion account not only for particles' kinematics, governed by the Euler equations, but also for their dynamics (which is obviously neglected if the mass of particles is taken to be zero). A few simple model problems are considered.

Keywords: advection, mixing, point vortex, coarse-grained impurities, bifurcation complex.

Full text: PDF file (10549 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 521
MSC: 76M23, 76B47,70Exx, 70Hxx
Received: 04.12.2009

Citation: A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Dynamic advection”, Nelin. Dinam., 6:3 (2010), 521–530

Citation in format AMSBIB
\Bibitem{BorMamRam10}
\by A.~V.~Borisov, I.~S.~Mamaev, S.~M.~Ramodanov
\paper Dynamic advection
\jour Nelin. Dinam.
\yr 2010
\vol 6
\issue 3
\pages 521--530
\mathnet{http://mi.mathnet.ru/nd22}
\elib{http://elibrary.ru/item.asp?id=15223025}


Linking options:
  • http://mi.mathnet.ru/eng/nd22
  • http://mi.mathnet.ru/eng/nd/v6/i3/p521

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Нелинейная динамика
    Number of views:
    This page:140
    Full text:50
    References:46
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019